

Absolute Maximum Ratings（Note 4）

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage（Note 5）
Input Current（Note 5）
Voltage Applied to Any Output in the Disabled or Power－off State in the HIGH State
Current Applied to Output in LOW State（Max）
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
-0.5 V to 5.5 V
-0.5 V to V_{CC}
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

DC Latchup Source Current	-500 mA
Over Voltage Latchup $(\mathrm{I} / \mathrm{O})$	10 V

Recommended Operating Conditions

Free Air Ambient Temperature $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage $\quad+4.5 \mathrm{~V}$ to +5.5 V

Minimum Input Edge Rate（ $\Delta \mathrm{V} / \Delta \mathrm{t}$ ）

Data Input	$50 \mathrm{mV} / \mathrm{ns}$
Enable Input	$20 \mathrm{mV} / \mathrm{ns}$

$-20 \mathrm{mV} / \mathrm{ns}$
Note 4：Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Note 5：Either voltage limit or current limit is sufficient to protect inputs．

DC Electrical Characteristics

Symbol	Parameter	Min	Typ Max	Units	v_{cc}	Conditions
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0		V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		0.8	V		Recognized LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage		－1．2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	2.5		V	Min	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$
		2.0		V	Min	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$
V_{OL}	Output LOW Voltage		0.55	V	Min	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$
I_{H}	Input HIGH Current			$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Note } 6) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test		7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
${ }_{\text {IL }}$	Input LOW Current		$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Note } 6) \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75		V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{H}}+ \\ \mathrm{I}_{\mathrm{OZH}} \end{array}$	Output Leakage Current		10	$\mu \mathrm{A}$	0－5．5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V} ; \overline{\mathrm{OE}}, \mathrm{OE}=2.0 \mathrm{~V}$
$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{LL}}+ \\ \mathrm{I}_{\mathrm{OZL}} \\ \hline \end{array}$	Output Leakage Current		－10	$\mu \mathrm{A}$	0－5．5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} ; \overline{\mathrm{OE}}, \mathrm{OE}=2.0 \mathrm{~V}$
los	Output Short－Circuit Current	－100	－275	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$l_{\text {CEX }}$	Output HIGH Leakage Current		50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
lzz	Bus Drainage Test		100	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ ；All Others GND
$\mathrm{I}^{\text {che }}$	Power Supply Current		1.0	mA	Max	All Outputs HIGH
${ }^{\text {cCL }}$	Power Supply Current		68	$\mu \mathrm{A}$	Max	An or Bn Outputs Low
$\mathrm{I}_{\text {ccz }}$	Power Supply Current		1.0	mA	Max	$\overline{\mathrm{OE}}_{\mathrm{n}}=\mathrm{V}_{\mathrm{CC}},$ All Others at V_{CC} or GND
${ }^{\text {CCT }}$	Additional $\mathrm{ICC}^{\text {Input }}$		2.5	mA	Max	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ All Others at V_{CC} or GND
${ }_{\text {CCD }}$	Dynamic ICC \quad No Load （Note 6）		0.23	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open Transparent Mode One Bit Toggling，50\％Duty Cycle

[^0]| Symbol | Parameter | Min | Typ | Max | Units | V_{CC} | $\begin{gathered} \text { Conditions } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OLP }}$ | Quiet Output Maximum Dynamic V_{OL} | | 0.7 | 1.2 | V | 5.0 | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7) |
| $\mathrm{V}_{\text {OLV }}$ | Quiet Output Minimum Dynamic V_{OL} | -1.5 | -1.0 | | V | 5.0 | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7) |
| $\mathrm{V}_{\text {OHV }}$ | Minimum HIGH Level Dynamic Output Voltage | 2.5 | 3.0 | | V | 5.0 | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8) |
| $\mathrm{V}_{\text {IHD }}$ | Minimum HIGH Level Dynamic Input Voltage | 2.2 | 1.8 | | V | 5.0 | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 9) |
| $\mathrm{V}_{\text {ILD }}$ | Maximum LOW Level Dynamic Input Voltage | | 1.2 | 0.8 | V | 5.0 | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 9) |

Note 7: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven OV to 3 V . One output at LOW. Guaranteed, but not tested.
Note 8: Max number of outputs defined as (n). $n-1$ data inputs are driven $0 V$ to $3 V$. One output HIGH. Guaranteed, but not tested.
Note 9: Max number of data inputs (n) switching. $\mathrm{n}-1$ inputs switching 0 V to 3 V . Input-under-test switching: 3 V to threshold ($\mathrm{V}_{\mathrm{ILD}}$), 0 V to threshold ($\mathrm{V}_{\mathrm{IHD}}$) Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	150	200		150		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay A or B to B or A	1.5	2.7	4.6	1.5	4.6	ns
$\mathrm{t}_{\text {PHL }}$		1.5	3.2	4.6	1.5	4.6	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay LEAB or LEBA to B or A	1.5	3.1	5.0	1.5	5.0	ns
$t_{\text {PHL }}$		1.5	3.6	5.0	1.5	5.0	
$\mathrm{t}_{\text {PLH }}$		1.5	3.4	5.3	1.5	5.3	ns
$\mathrm{t}_{\text {PHL }}$		1.5	3.7	5.3	1.5	5.3	
$t_{\text {PZH }}$	Propagation Delay OEAB or $\overline{O E B A}$ to B or A	1.5	2.7	5.6	1.5	5.6	ns
$\mathrm{t}_{\text {PZL }}$		1.5	3.0	5.6	1.5	5.6	
$\mathrm{t}_{\text {PHZ }}$	Propagation Delay OEAB or $\overline{O E B A}$ to B or A	1.5	3.7	6.0	1.5	6.0	ns
$\mathrm{t}_{\text {PLZ }}$		1.5	3.2	6.0	1.5	6.0	

AC Operating Requirements						
Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, A to $\overline{\text { CLKAB }}$	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, A to $\overline{\text { CLKAB }}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time, B to $\overline{\text { CLKBA }}$	$\begin{aligned} & \hline 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, B to CLKBA	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time, A to LEAB or B to LEBA, $\overline{\text { CLK }}$ HIGH	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, A to LEAB or B to LEBA, $\overline{\text { CLK }}$ HIGH	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, A to LEAB or B to LEBA, CLK LOW	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, A to LEAB or B to LEBA, CLK LOW	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	$\begin{aligned} & \text { Pulse Width, } \\ & \text { LEAB or LEBA, HIGH } \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse Width, $\overline{\text { CLKAB }}$ or CLKBA, HIGH or LOW	$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$		ns

Extended AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 18 Outputs Switching (Note 10)			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ 1 \text { Output Switching } \\ \text { (Note 11) } \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 18 Outputs Switching (Note 12)		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	Propagation Delay Data to Outputs	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.9 \\ & 9.2 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	Propagation Delay LEAB or LEBA to B or A	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay $\overline{C L K A B}$ or $\overline{\text { CLKBA }}$ to B or A	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline 6.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 7.7 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{array}{\|l\|l\|} \hline \mathrm{t}_{\text {PZH }} \\ \mathrm{t}_{\text {PZL }} \end{array}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{array}{\|l} \hline \mathrm{t}_{\mathrm{PHZ}} \\ \mathrm{t}_{\mathrm{PLZ}} \\ \hline \end{array}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$					ns
Note 10: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.). Note 11: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 itors in the standard AC load. This specification pertains to single output switching only. Note 12: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. Note 13: 3-STATE delays are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and have been excluded from the datasheet.									

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 18 Outputs Switching (Note 14) Max	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ 18 \text { Outputs Switching } \\ \text { (Note 15) } \\ \text { Max } \end{gathered}$	Units
$\mathrm{t}_{\mathrm{OSHL}}$ (Note 16)	Pin to Pin Skew HL Transitions	2.0	2.8	ns
tosLH (Note 16)	Pin to Pin Skew LH Transitions	2.0	2.5	ns
$t_{P S}$ (Note 17)	Duty Cycle LH-HL Skew	2.0	2.8	ns
$\mathrm{t}_{\mathrm{OST}}$ (Note 16)	Pin to Pin Skew LH/HL Transitions	2.5	3.0	ns
t_{PV} (Note 18)	Device to Device Skew LH/HL Transitions	3.0	3.5	ns

Note 14: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase
(i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

Note 15: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load
Note 16: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$), LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (tost). The specification is guaranteed but not tested.
Note 17: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 18: Propagation delay variation for a given set of conditions (i.e., temperature and $V_{C C}$) from device to device. This specification is guaranteed but not tested.

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$
C_{IN}	Input Capacitance	5.0	pF	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}($ Note 19)	Output Capacitance	11.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note 19: $\mathrm{C}_{1 / 0}$ is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$ per MIL-STD-883, Method 3012.

AC Loading

*Includes jig and probe capacitance. FIGURE 1. Standard AC Test Load

Input Pulse Requirements

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 3. Test Input Signal Requirements

AC Waveforms

FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

FIGURE 5. Propagation Delay, Pulse Width Waveforms

FIGURE 6. 3-STATE Output HIGH and LOW Enable and Disable Times

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Fairchild does not assume ary responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at ary time without notice to change said circuitry and specifications.

[^0]: Note 6：Guaranteed，but not tested

