High Speed Double-Ended PWM Controller

The MC34025 series are high speed, fixed frequency, double-ended pulse width modulator controllers optimized for high frequency operation. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature an oscillator, a temperature compensated reference, a wide bandwidth error amplifier, a high speed current sensing comparator, steering flip-flop, and dual high current totem pole outputs ideally suited for driving power MOSFETs.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, and a latch for single pulse metering.

The flexibility of this series allows it to be easily configured for either current mode or voltage mode control.

- 50 ns Propagation Delay to Outputs
- Dual High Current Totem Pole Outputs
- Wide Bandwidth Error Amplifier
- Fully-Latched Logic with Double Pulse Suppression
- Latching PWM for Cycle-By-Cycle Current Limiting
- Soft-Start Control with Latched Overcurrent Reset
- Input Undervoltage Lockout with Hysteresis
- Low Start-Up Current (500 $\mu \mathrm{A}$ Typ)
- Internally Trimmed Reference with Undervoltage Lockout
- 90\% Maximum Duty Cycle (Externally Adjustable)
- Precision Trimmed Oscillator
- Voltage or Current Mode Operation to 1.0 MHz
- Functionally Similar to the UC3825

This device contains 227 active transistors.

MC34025
MC33025

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC33025DW	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-16L
MC 33025 P		Plastic DIP
MC34025DW	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-16L
		Plastic DIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	30	V
Output Driver Supply Voltage	V_{C}	20	V
Output Current, Source or Sink (Note 1) DC Pulsed ($0.5 \mu \mathrm{~s}$)	lo	$\begin{aligned} & 0.5 \\ & 2.0 \end{aligned}$	A
Current Sense, Soft-Start, Ramp, and Error Amp Inputs	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	V
Error Amp Output and Soft-Start Sink Current	Io	10	mA
Clock and RT Output Current	ICO	5.0	mA
Power Dissipation and Thermal Characteristics SO-16 Package (Case 751G) Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Air DIP Package (Case 648) Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Air	PD $\mathrm{R}_{\theta \mathrm{JA}}$ PD $\mathrm{R}_{\theta \mathrm{JA}}$	$\begin{aligned} & 862 \\ & 145 \\ & \\ & 1.25 \\ & 100 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \mathrm{~W} \\ \mathrm{~W} / \mathrm{W} \end{gathered}$
Operating Junction Temperature	TJ	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature (Note 2) MC34025 MC33025	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=15 \mathrm{~V}, R_{T}=3.65 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\right.$, for typical values $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, for min $/$ max values T_{A} is the operating ambient temperature range that applies [Note 2], unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
REFERENCE SECTION					
Reference Output Voltage ($\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}$)	$\mathrm{V}_{\text {ref }}$	5.05	5.1	5.15	V
Line Regulation ($\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ to 30 V)	Regline	-	2.0	15	mV
Load Regulation ($\mathrm{l} \mathrm{O}=1.0 \mathrm{~mA}$ to 10 mA)	Regload	-	2.0	15	mV
Temperature Stability	Ts	-	0.2	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Output Variation over Line, Load, and Temperature	$\mathrm{V}_{\text {ref }}$	4.95	-	5.25	V
Output Noise Voltage ($\mathrm{f}=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$)	V_{n}	-	50	-	$\mu \mathrm{V}$
Long Term Stability ($\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ for 1000 Hours)	S	-	5.0	-	mV
Output Short Circuit Current	ISC	-30	-65	-100	mA

OSCILLATOR SECTION

Frequency $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$ Line ($\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ to 30 V) and Temperature ($\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$)	$\mathrm{f}_{\text {osc }}$	$\begin{aligned} & 380 \\ & 370 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 420 \\ & 430 \end{aligned}$	kHz
Frequency Change with Voltage ($\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ to 30 V)	$\Delta \mathrm{f}_{\text {Osc }} / \Delta \mathrm{V}$	-	0.2	1.0	\%
Frequency Change with Temperature ($\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$)	$\Delta \mathrm{f}_{\text {OSc }} / \Delta \mathrm{T}$	-	2.0	-	\%
Sawtooth Peak Voltage	V_{P}	2.6	2.8	3.0	V
Sawtooth Valley Voltage	V_{V}	0.7	1.0	1.25	V
Clock Output Voltage High State Low State	V OH V_{OL}	3.9	$\begin{aligned} & 4.5 \\ & 2.3 \end{aligned}$	$-\overline{2.9}$	V

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
$\begin{aligned} \mathrm{T}_{\text {low }} & =0^{\circ} \mathrm{C} \text { for MC34025 } & \mathrm{T}_{\text {high }} & =+70^{\circ} \mathrm{C} \text { for MC34025 } \\ & =-40^{\circ} \mathrm{C} \text { for MC33025 } & & =+105^{\circ} \mathrm{C} \text { for MC33025 }\end{aligned}$

MC34025 MC33025

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=3.65 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\right.$, for typical values $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, for min $/ \mathrm{max}$ values T_{A} is the operating ambient temperature range that applies [Note 2], unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ERROR AMPLIFIER SECTION					
Input Offset Voltage	$\mathrm{V}_{1 \mathrm{O}}$	-	-	15	mV
Input Bias Current	1 IB	-	0.6	3.0	$\mu \mathrm{A}$
Input Offset Current	I_{1}	-	0.1	1.0	$\mu \mathrm{A}$
Open-Loop Voltage Gain ($\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}$ to 4.0 V)	AVOL	60	95	-	dB
Gain Bandwidth Product ($\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$)	GBW	4.0	8.3	-	MHz
Common Mode Rejection Ratio ($\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 5.5 V)	CMRR	75	95	-	dB
Power Supply Rejection Ratio ($\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ to 30 V)	PSRR	85	110	-	dB
$\begin{aligned} & \text { Output Current, Source }\left(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}\right) \\ & \text { Sink }\left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}\right) \end{aligned}$	ISource ISink	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.6 \end{aligned}$	-	mA
Output Voltage Swing, High State ($\mathrm{I}=-0.5 \mathrm{~mA}$) Low State ($\mathrm{I}=1.0 \mathrm{~mA}$)	V_{OH} V_{OL}	$\begin{gathered} 4.5 \\ 0 \end{gathered}$	$\begin{gathered} \hline 4.75 \\ 0.4 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 1.0 \end{aligned}$	V
Slew Rate	SR	6.0	12	-	V/us

PWM COMPARATOR SECTION

Ramp Input Bias Current	IIB	-	-0.5	-5.0	$\mu \mathrm{A}$
Duty Cycle, Maximum Minimum	$\begin{aligned} & \mathrm{DC}_{(\text {max })} \\ & \mathrm{DC}_{(\text {min })} \end{aligned}$	80	90	$\overline{0}$	\%
Zero Duty Cycle Threshold Voltage Pin 3(4) (Pin 7(9) = 0 V)	$\mathrm{V}_{\text {th }}$	1.1	1.25	1.4	V
Propagation Delay (Ramp Input to Output, $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$)	tPLH(in/out)	-	60	100	ns

SIFT-START SECTION

Charge Current $\left(\mathrm{V}_{\text {Soft-Start }}=0.5 \mathrm{~V}\right)$	$I_{\text {chg }}$	3.0	9.0	20	$\mu \mathrm{~A}$
Discharge Current $\left(\mathrm{V}_{\text {Soft-Start }}=1.5 \mathrm{~V}\right)$	$I_{\text {dischg }}$	1.0	4.0	-	mA

CURRENT SENSE SECTION

Input Bias Current (Pin 9(12) $=0$ V to 4.0 V)	I_{IB}	-	-	15	$\mu \mathrm{~A}$
Current Limit Comparator Threshold	$\mathrm{V}_{\text {th }}$	0.9	1.0	1.10	V
Shutdown Comparator Threshold	$\mathrm{V}_{\text {th }}$	1.25	1.40	1.55	
Propagation Delay (Current Limit/Shutdown to Output, $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$)	tPLH(in/out) $^{l n}$	-	50	80	ns

OUTPUT SECTION

$\begin{array}{cl} \hline \begin{array}{c} \text { Output Voltage } \\ \text { Low State } \end{array} & (\text { ISink }=20 \mathrm{~mA}) \\ & (\text { ISink }=200 \mathrm{~mA}) \\ \text { High State } & (\text { ISource }=20 \mathrm{~mA}) \\ & (\text { ISource }=200 \mathrm{~mA}) \end{array}$	$\begin{aligned} & \mathrm{v}_{\mathrm{OL}} \\ & \mathrm{v}_{\mathrm{OH}} \end{aligned}$	$\begin{gathered} - \\ 13 \\ 12 \end{gathered}$	$\begin{gathered} 0.25 \\ 1.2 \\ 13.5 \\ 13 \end{gathered}$	$\begin{gathered} 0.4 \\ 2.2 \\ - \end{gathered}$	V
Output Voltage with UVLO Activated ($\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$, ISink $=0.5 \mathrm{~mA}$)	$\mathrm{V}_{\text {OL(}}$ (UVLO)	-	0.25	1.0	V
Output Leakage Current ($\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}$)	IL	-	100	500	$\mu \mathrm{A}$
Output Voltage Rise Time ($\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$)	t_{r}	-	30	60	ns
Output Voltage Fall Time ($\mathrm{CL}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{J}=+25^{\circ} \mathrm{C}$)	t_{f}	-	30	60	ns

UNDERVOLTAGE LOCKOUT SECTION

Start-Up Threshold (VCC Increasing)	$\mathrm{V}_{\mathrm{th}(\mathrm{on})}$	8.8	9.2	9.6	V
UVLO Hysteresis Voltage (V_{CC} Decreasing After Turn-On)	V_{H}	0.4	0.8	1.2	V

TOTAL DEVICE

Power Supply Current	ICC				
Start-Up $\left(V_{C C}=8.0 \mathrm{~V}\right)$		-	0.5	1.2	mA
Operating		-	25	35	

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
$\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC34025 $\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC34025
$=-40^{\circ} \mathrm{C}$ for MC33025 $=+105^{\circ} \mathrm{C}$ for MC33025

Figure 1. Timing Resistor versus
Oscillator Frequency

Figure 3. Error Amp Open Loop Gain and Phase versus Frequency

Figure 5. Error Amp Small Signal Transient Response

$0.1 \mu \mathrm{~s} / \mathrm{DIV}$

Figure 2. Oscillator Frequency versus Temperature

Figure 4. PWM Comparator Zero Duty Cycle Threshold Voltage versus Temperature

Figure 6. Error Amp Large Signal Transient Response

$0.1 \mu \mathrm{~s} / \mathrm{DIV}$

Figure 7. Reference Voltage Change versus Source Current

Figure 9. Reference Line Regulation

Figure 8. Reference Short Circuit Current versus Temperature

Figure 10. Reference Load Regulation

Figure 12. Shutdown Comparator Threshold Voltage versus Temperature

Figure 13. Soft-Start Charge Current versus Temperature

Figure 15. Drive Output Rise and Fall Time

OUTPUT RISE \& FALL TIME 1.0 nF LOAD $50 \mathrm{~ns} /$ DIV

Figure 14. Output Saturation Voltage versus Load Current

Figure 16. Drive Output Rise and Fall Time

OUTPUT RISE \& FALL TIME 10.0 nF LOAD $50 \mathrm{~ns} / \mathrm{DIV}$

Figure 17. Supply Voltage versus Supply Current

Figure 18. Representative Block Diagram

Figure 19. Current Limit Operating Waveforms

Output B \qquad

The MC33025 and MC34025 series are high speed, fixed frequency, double-ended pulse width modulator controllers optimized for high frequency operation. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. A representative block diagram is shown in Figure 18.

Oscillator

The oscillator frequency is programmed by the values selected for the timing components R_{\top} and $\mathrm{C}_{\boldsymbol{T}}$. The R_{\top} pin is set to a temperature compensated 3.0 V . By selecting the value of R_{T}, the charge current is set through a current mirror for the timing capacitor C_{T}. This charge current runs continuously through $\mathrm{C}_{\boldsymbol{T}}$. The discharge current is ratioed to be 10 times the charge current, which yields the maximum duty cycle of 90%. C_{T} is charged to 2.8 V and discharged to 1.0 V . During the discharge of C , the oscillator generates an internal blanking pulse that resets the PWM Latch, inhibits the outputs, and toggles the steering flip-flop. The threshold voltages on the oscillator comparator is trimmed to guarantee an oscillator accuracy of 5.0% at $25^{\circ} \mathrm{C}$.

Additional dead time can be added by externally increasing the charge current to $\mathrm{C}^{\boldsymbol{\top}}$ as shown in Figure 23. This changes the charge to discharge ratio of $\mathrm{C}_{\boldsymbol{T}}$ which is set internally to Icharge $/ 10$ I charge. The new charge to discharge ratio will be:

$$
\% \text { Deadtime }=\frac{\mathrm{I}_{\text {additional }}+\mathrm{I}_{\text {charge }}}{10\left(\mathrm{I}_{\text {charge }}\right)}
$$

A bidirectional clock pin is provided for synchronization or for master/slave operation. As a master, the clock pin provides a positive output pulse during the discharge of C\rceil. As a slave, the clock pin is an input that resets the PWM latch and blanks the drive output, but does not discharge C_{T}. Therefore, the oscillator is not synchronized by driving the clock pin alone. Figures 29 and 30 provide suggested synchronization.

Error Amplifier

A fully compensated Error Amplifier is provided. It features a typical DC voltage gain of 95 dB and a gain bandwidth product of 8.3 MHz with 75 degrees of phase margin (Figure 3). Typical application circuits will have the noninverting input tied to the reference. The inverting input will typically be connected to a feedback voltage generated from the output of the switching power supply. Both inputs have a Common Mode Voltage (V CM) input range of 1.5 V to 5.5 V. The Error Amplifier Output is provided for external loop compensation.

Soft-Start Latch

Soft-Start is accomplished in conjunction with an external capacitor. The soft start capacitor is charged by an internal $9.0 \mu \mathrm{~A}$ current source. This capacitor clamps the output of the error amplifier to less than its normal output voltage, thus limiting the duty cycle.

The time it takes for a capacitor to reach full charge is given by:

$$
\mathrm{t} \approx\left(4.5 \cdot 10^{5}\right) \mathrm{C}_{\text {Soft-Start }}
$$

A Soft-Start latch is incorporated to prevent erratic operation of this circuitry. Two conditions can cause the Soft-Start circuit to latch so that the Soft-Start capacitor stays discharged. The first condition is activation of an undervoltage lockout of either V_{CC} or $\mathrm{V}_{\text {reff }}$. The second condition is when current sense input exceeds 1.4 V . Since this latch is "set dominant", it cannot be reset until either of these signals is removed, and the voltage at $\mathrm{C}_{\text {Soft-Start }}$ is less than 0.5 V .

PWM Comparator and Latch

A PWM circuit typically compares an error voltage with a ramp signal. The outcome of this comparison determines the state of the output. In voltage mode operation the ramp signal is the voltage ramp of the timing capacitor. In current mode operation the ramp signal is the voltage ramp induced in a current sensing element. The ramp input of the PWM comparator is pinned out so that the user can decide which mode of operation best suits the application requirements. The ramp input has a 1.25 V offset such that whenever the voltage at this pin exceeds the Error Amplifier Output voltage minus 1.25 V , the PWM comparator will cause the PWM latch to set, disabling the outputs. Once the PWM latch is set, only a blanking pulse by the oscillator can reset it, thus initiating the next cycle.

A toggle flip flop connected to the output of the PWM latch controls which output is active. The flip flop is pulsed by an OR gate that gets its inputs from the oscillator clock and the output of the PWM latch. A pulse from either one will cause the flip flop to enable the other output.

Current Limiting and Shutdown

A pin is provided to perform current limiting and shutdown operations. Two comparators are connected to the input of this pin. When the voltage at this pin exceeds 1.0 V , one of the comparators is activated. The output of this comparator sets the PWM latch, which disables the output. In this way cycle-by-cycle current limiting is accomplished. If a current limit resistor is used in series with the power devices, the value of the resistor is found by:

$$
\mathrm{R}_{\text {Sense }}=\frac{1.0 \mathrm{~V}}{\mathrm{I}_{\mathrm{pk}}(\text { switch })}
$$

If the voltage at this pin exceeds 1.4 V , the second comparator is activated. This comparator sets a latch which, in turn, causes the Soft-Start capacitor to be discharged. In this way a "hiccup" mode of recovery is possible in the case of output short circuits. If a current limit resistor is used in series with the output devices, the peak current at which the controller will enter a "hiccup" mode is given by:

$$
I_{\text {shutdown }}=\frac{1.4 \mathrm{~V}}{R_{\text {Sense }}}
$$

Undervoltage Lockout

There are two undervoltage lockout circuits within the IC. The first senses V_{CC} and the second $\mathrm{V}_{\text {ref. }}$. During power-up, V_{CC} must exceed 9.2 V and $\mathrm{V}_{\text {ref }}$ must exceed 4.2 V before the outputs can be enabled and the Soft-Start latch released. If V_{CC} falls below 8.4 V or $\mathrm{V}_{\text {ref }}$ falls below 3.6 V , the outputs are disabled and the Soft-Start latch is activated. When the UVLO is active, the part is in a low current standby mode allowing the IC to have an off-line bootstrap start-up circuit. Typical start-up current is $500 \mu \mathrm{~A}$.

Output

The MC34025 has two high current totem pole outputs specifically designed for direct drive of power MOSFETs. They are capable of up to ± 2.0 A peak drive current with a typical rise and fall time of 30 ns driving a 1.0 nF load.

Separate pins for V_{C} and Power Ground are provided. With proper implementation, a significant reduction of switching transient noise imposed on the control circuitry is possible. The separate V_{C} supply input also allows the designer added flexibility in tailoring the drive voltage independent of V_{CC}.

Reference

A 5.1 V bandgap reference is pinned out and is trimmed to an initial accuracy of $\pm 1.0 \%$ at $25^{\circ} \mathrm{C}$. This reference has short circuit protection and can source in excess of 10 mA for powering additional control system circuitry.

Design Considerations

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. With high frequency, high power, switching power supplies it is imperative to have separate current loops for the signal paths and for the power paths. The printed circuit layout should contain a ground plane with low current signal and high current switch and output grounds returning on separate paths back to the input filter capacitor. All bypass capacitors and snubbers should be connected as close as possible to the specific part in question. The PC board lead lengths must be less than 0.5 inches for effective bypassing or snubbing.

Instabilities
In current mode control, an instability can be encountered at any given duty cycle. The instability is caused by the current feedback loop. It has been shown that the instability is caused by a double pole at half the switching frequency. If an external ramp $\left(\mathrm{S}_{\mathrm{e}}\right)$ is added to the on-time ramp $\left(\mathrm{S}_{\mathrm{n}}\right)$ of the current-sense waveform, stability can be achieved (see Figure 20).

One must be careful not to add too much ramp compensation. If too much is added, the system will start to perform like a voltage mode regulator. All benefits of current mode control will be lost. Figures 28A and 28B show examples of two different ways in which external ramp compensation can be implemented.

Figure 20. Ramp Compensation

A simple equation can be used to calculate the amount of external ramp necessary to add that will achieve stability in the current loop. For the following equations, the calculated values for the application circuit in Figure 36 are also shown.

$$
\mathrm{Se}=\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~L}}\left(\frac{\mathrm{~N}_{\mathrm{S}}}{\mathrm{~N}_{\mathrm{P}}}\right)\left(\mathrm{R}_{\mathrm{S}}\right) \mathrm{A}_{\mathrm{i}}
$$

where: $\quad \mathrm{V}_{\mathrm{O}}=\mathrm{DC}$ output voltage
$N_{P}, N_{S}=$ number of power transformer primary or secondary turns
$A_{i}=$ gain of the current sense network (see Figures 25, 26 and 27)
$\mathrm{L}=$ output inductor
$R_{S}=$ current sense resistance
For the application circuit: $\mathrm{S}_{\mathrm{e}}=\frac{5}{1.8 \mu}\left(\frac{4}{16}\right)(0.3)(0.55)$

$$
=0.115 \mathrm{~V} / \mu \mathrm{s}
$$

MC34025 MC33025
PIN FUNCTION DESCRIPTION

Pin No.	Function	
DIP/SOIC	Error Amp Inverting Input	This pin is usually used for feedback from the output of the power supply. 1
2	Error Amp Noninverting Input	This pin is used to provide a reference in which an error signal can be produced on the output of the error amp. Usually this is connected to Vref, however an external reference can also be used.
3	Output	

Figure 21. Voltage Mode Operation

In voltage mode operation, the control range on the output of the Error Amplifier from 0% to 90% duty cycle is from 2.25 V to 4.05 V .

Figure 22. Current Mode Operation

In current mode control, an RC filter should be placed at the ramp input to filter the leading edge spike caused by turn-on of a power MOSFET.

Figure 23. Dead Time Addition

Additional dead time can be added by the addition of a dead time resistor from $V_{\text {ref }}$ to C_{T}. See text on oscillator section for more information.

Figure 24. External Clock Synchronization

The sync pulse fed into the clock pin must be at least 3.9 V . R_{T} and C_{T} need to be set 10% slower than the sync frequency. This circuit is also used in voltage mode operation for master/slave operation. The clock signal would be coming from the master which is set at the desired operating frequency, while the slave is set 10% slower.

Figure 25. Resistive Current Sensing

The addition of an RC filter will eliminate instability caused by the leading edge spike on the current waveform. This sense signal can also be used at the ramp input pin for current mode control. For ramp compensation it is necessary to know the gain of the current feedback loop. If a transformer is used, the gain can be calculated by:

$$
A_{i}=\frac{R_{\text {Sense }}}{\text { turns ratio }}
$$

Figure 26. Primary Side Current Sensing
Figure 27. Primary or Secondary Side Current Sensing

The addition of an RC filter will eliminate instability caused by the leading edge spike on the current waveform. This sense signal can also be used at the ramp input pin for current mode control. For ramp compensation it is necessary to know the gain of the current feedback loop. The gain can be calculated by:

$$
A_{i}=\frac{R_{w}}{\text { turns ratio }}
$$

Figure 28A. Slope Compensation (Noise Sensitive)

This method of slope compensation is easy to implement, however, it is noise sensitive. Capacitor C_{1} provides AC coupling. The oscillator signal is added to the current signal by a voltage divider consisting of resistors R_{1} and R_{2}.

Figure 28B. Slope Compensation (Noise Immune)

When only one output is used, this method of slope compensation can be used and it is relatively noise immune. Resistor R_{M} and capacitor C_{M} provide the added slope necessary. By choosing R_{M} and C_{M} with a larger time constant than the switching frequency, you can assume that its charge is linear. First choose C_{M}, then R_{M} can be adjusted to achieve the required slope. The diode provides a reset pulse at the ramp input at the end of every cycle. The charge current I_{M} can be calculated by $\mathrm{I}_{\mathrm{M}}=\mathrm{C}_{\mathrm{M}} \mathrm{S}_{\mathrm{e}}$. Then R_{M} can be calculated by $\mathrm{R}_{\mathrm{M}}=\mathrm{V}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{M}}$.

Figure 29. Current Mode Master/Slave Operation Over Short Distances

Figure 30. Synchronization Over Long Distances

Figure 31. Buffered Maximum Clamp Level

In voltage mode operation, the maximum duty cycle can be clamped. By the addition of a PNP transistor to buffer the clamp voltage, the Soft-Start current is not affected by R_{1}.

The new equation for Soft-Start is $t \approx \frac{\mathrm{~V}_{\text {clamp }}+0.6}{9.0 \mu \mathrm{~A}}\left(\mathrm{C}_{\mathrm{SS}}\right)$
In current mode operation, this circuit will limit the maximum voltage allowed at the ramp input to end a cycle.

Figure 32. Bipolar Transistor Drive

The totem pole output can furnish negative base current for enhanced transistor turn-off, with the addition of the capacitor in series with the base.

Figure 34. Direct Transformer Drive

The totem pole output can easily drive pulse transformers. A Schottky diode is recommended when driving inductive loads at high frequencies. The diode can reduce the driver's power dissipation due to excessive ringing, by preventing the output pin from being driven below ground.

Figure 35. MOSFET Parasitic Oscillations

A series gate resistor may be needed to damp high frequency parasitic oscillation caused by a MOSFET's input capacitance and any series wiring inductance in the gate-source circuit. The series resistor will also decrease the MOSFET's switching speed. A Schottky diode can reduce the driver's power dissipation due to excessive ringing, by preventing the output pin from being driven below ground. The Schottky diode also prevents substrate injection when the output pin is driven below ground.

Figure 37. PC Board With Components

Figure 38. PC Board Without Components

(Top View)

MC34025 MC33025
OUTLINE DIMENSIONS

P SUFFIX

PLASTIC PACKAGE
CASE 648-08

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION LTO CENTER OF LEADS WHEN FORMED PARALLEL.
4. FIIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.070	1.02	1.77
G	0.100 BSC	2.54 BSC		
H	0.050	BSC	1.27 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

DW SUFFIX
PLASTIC PACKAGE
CASE 751G-02
(SO-16L)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION $0.15(0.006)$ PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 DAMBAR PROTRUSION SHALL BE 0.13
(0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.400	0.411	10.15	10.45
B	0.292	0.299	7.40	7.60
C	0.093	0.104	2.35	2.65
D	0.014	0.019	0.35	0.49
F	0.020	0.035	0.50	
G	0.050	0.90		
J	0.010	0.012	1.27	
		BSC		
K	0.004	0.009	0.32	
M	0°	7°	0.10	0.25
P	0.395	0.415	10.05	7°
R	0.010	0.029	0.25	0.75

MC34025 MC33025
OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and \mathbb{M} are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 602-244-6609 ~}$ - US \& Canada ONLY 1-800-774-1848

INTERNET: http://motorola.com/sps

Mfax is a trademark of Motorola, Inc.
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

