DATA SHEET

TDA4680
 Video processor with automatic cut-off and white level control

Product specification
Supersedes data of April 1993
File under Integrated Circuits, IC02

Video processor with automatic cut-off and white level control

FEATURES

- Operates from an 8 V DC supply
- Black level clamping of the colour difference, luminance and RGB input signals with coupling-capacitor DC level storage
- Two fully-controlled, analog RGB inputs, selected either by fast switch signals or via ${ }^{2} \mathrm{C}$-bus
- Saturation, contrast and brightness adjustment via $I^{2} \mathrm{C}$-bus
- Same RGB output black levels for Y/CD and RGB input signals
- Timing pulse generation from either a 2 or 3-level sandcastle pulse for clamping, horizontal and vertical synchronization, cut-off and white level timing pulses
- Automatic cut-off control with picture tube leakage current compensation
- Software-based automatic white level control or fixed white levels via $\mathrm{I}^{2} \mathrm{C}$-bus
- Cut-off and white level measurement pulses in the last 4 lines of the vertical blanking interval $\left(I^{2} \mathrm{C}\right.$-bus selection for PAL, SECAM, or NTSC, PAL-M)
- Increased RGB signal bandwidths for progressive scan and 100 Hz operation (selected via $\mathrm{I}^{2} \mathrm{C}$-bus)
- Two switch-on delays to prevent discolouration before steady-state operation
- Average beam current and peak drive limiting
- PAL/SECAM or NTSC matrix selection via $\mathrm{I}^{2} \mathrm{C}$-bus
- Three adjustable reference voltage levels (via $\mathrm{I}^{2} \mathrm{C}$-bus) for automatic cut-off and white level control
- Emitter-follower RGB output stages to drive the video output stages
- Hue control output for the TDA4555, TDA4650/T, TDA4655/T or TDA4657.

GENERAL DESCRIPTION

The TDA4680 is a monolithic integrated circuit with a colour difference interface for video processing in TV receivers. Its primary function is to process the luminance and colour difference signals from multistandard colour decoders, TDA4555, TDA4650/T, TDA4655/T or TDA4657, Colour Transient Improvement (CTI) IC, TDA4565, Picture Signal Improvement (PSI) IC, TDA4670, or from a feature module.

The required input signals are:

- Luminance and negative colour difference signals
- 2 or 3-level sandcastle pulse for internal timing pulse generation
- $1^{2} \mathrm{C}$-bus data and clock signals for microcontroller control.

Two sets of analog RGB colour signals can also be inserted, e.g. one from a peritelevision connector and the other from an on-screen display generator; both inputs are fully-controlled internally. The TDA4680 includes full $1^{2} \mathrm{C}$-bus control of all parameters and functions with automatic cut-off and white level control of the picture tube cathode currents. It provides RGB output signals for the video output stages.
There is a very similar IC TDA4681 available. The only differences are in the NTSC matrix.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA4680	DIP28	plastic dual in-line package; 28 leads (600 mil)	SOT117-1
TDA4680WP	PLCC28	plastic leaded chip carrier; 28 leads	SOT261-2

Video processor with automatic cut-off and white level control

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage (pin 5)	7.2	8.0	8.8	V
I_{P}	supply current (pin 5)	-	85	-	mA
$\mathrm{V}_{8(p-p)}$	luminance input (peak-to-peak value)	-	0.45	-	V
$V_{6(p-p)}$	-(B-Y) input (peak-to-peak value)	-	1.33	-	V
$\mathrm{V}_{7(p-p)}$	-($\mathrm{R}-\mathrm{Y}$) input (peak-to-peak value)	-	1.05	-	V
V_{14}	3-level sandcastle pulse $\mathrm{H}+\mathrm{V}$ H BK	-	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
	2-level sandcastle pulse $\begin{aligned} & H+V \\ & B K \end{aligned}$	-	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\left.\right\|_{-} ^{-}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	RGB input signals at pins 2, 3, 4, 10, 11 and 12 (peak-to-peak value)	-	0.7	-	V
$\mathrm{V}_{\text {o(b-w) }}$	RGB outputs at pins 24, 22 and 20 (black-to-white value)	-	2.0	-	V
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	0	-	70	${ }^{\circ} \mathrm{C}$

Video processor with automatic cut-off and white level control	TDA4680

BLOCK DIAGRAM

Video processor with automatic cut-off and white level control

PINNING

SYMBOL	PIN	DESCRIPTION
FSW $_{2}$	1	fast switch 2 input
R_{2}	2	red input 2
G_{2}	3	green input 2
B_{2}	4	blue input 2
V_{P}	5	supply voltage
$-(\mathrm{B}-\mathrm{Y})$	6	colour difference input $-(\mathrm{B}-\mathrm{Y})$
$-(\mathrm{R}-\mathrm{Y})$	7	colour difference input $-(\mathrm{R}-\mathrm{Y})$
Y	8	luminance input
GND	9	ground
R_{1}	10	red input 1
G_{1}	11	green input 1
B_{1}	12	blue input 1
FSW	13	fast switch 1 input
SC	14	sandcastle pulse input
BCL	15	average beam current limiting input

| | |
| :--- | :--- | :--- |

SYMBOL	PIN	DESCRIPTION
$\mathrm{C}_{\text {PDL }}$	16	storage capacitor for peak drive limiting
C_{L}	17	storage capacitor for leakage current
WI	18	white level measurement input
Cl	19	cut-off measurement input
B_{O}	20	blue output
C_{B}	21	blue cut-off storage capacitor
G_{O}	22	green output
C_{G}	23	green cut-off storage capacitor
R_{O}	24	red output
C_{R}	25	red cut-off storage capacitor
HUE	26	hue control output
SDA	27	I²-bus serial data input/output
SCL	28	I $^{2} \mathrm{C}$-bus serial clock input

Fig. 3 Pin configuration for PLCC-version.

Video processor with automatic cut-off and white level control

$I^{2} \mathrm{C}$-BUS

Control

The $\mathrm{I}^{2} \mathrm{C}$-bus transmitter/receiver provides the data bytes to select and adjust the following functions and parameters:

- Brightness adjust
- Saturation adjust
- Contrast adjust
- Hue control voltage
- RGB gain adjust
- RGB reference voltage levels
- Peak drive limiting
- Selection of the vertical blanking interval and measurement lines for cut-off and white level control according to transmission standard
- Selects either 3-level or 2-level (5 V) sandcastle pulse
- Enables/disables input clamping pulse delay
- Enables/disables white level control
- Enables cut-off control; enables output clamping
- Enables/disables full screen white level
- Enables/disables full screen black level
- Selects either PAL/SECAM or NTSC matrix
- Enables saturation adjust; enables nominal saturation
- Enables/disables synchronization of the execution of $1^{2} \mathrm{C}$-bus commands with the vertical blanking interval
- Reads the result of the comparison of the nominal and actual RGB signal levels for automatic white level control.

$I^{2} \mathrm{C}$-bustransmitter/receiver and data transfer

${ }^{2}{ }^{2} \mathrm{C}$-bus Specification

The ${ }^{2} \mathrm{C}$-bus is a bidirectional, two-wire, serial data bus for intercommunication between ICs in a system. The microcontroller transmits/receives data from the $\mathrm{I}^{2} \mathrm{C}$-bus transceiver in the TDA4680 over the serial data line SDA (pin 27) synchronized by the serial clock line SCL (pin 28). Both lines are normally connected to a positive voltage supply through pull-up resistors. Data is transferred when the SCL line is LOW. When SCL is HIGH the serial data line SDA must be stable. A HIGH-to-LOW transition of the SDA line when SCL is HIGH is defined as a START bit. A LOW-to-HIGH transition of the SDA line when SCL is HIGH is defined as a STOP bit. Each transmission must start with a START bit and end with a STOP bit. The bus is busy after a START bit and is only free again after a STOP bit has been transmitted.
$I^{2} \mathrm{C}$-bus RECEIVER (micROCONTROLLER WRITE MODE)
Each transmission to/from the $\mathrm{I}^{2} \mathrm{C}$-bus transceiver consists of at least three bytes following the START bit. Each byte is acknowledged by an acknowledge bit immediately following each byte. The first byte is the Module Address (MAD) byte, also called slave address byte. This consists of the module address, 1000100 for the TDA4680, plus the R/W bit (see Fig.4). When the TDA4680 is a slave receiver $(R / \bar{W}=0)$ the module address byte is $10001000(88 \mathrm{H})$. When the TDA4680 is a slave transmitter $(R / \bar{W}=1)$ the module address byte is 10001001 (89H).

The length of a data transmission is unrestricted, but the module address and the correct sub-address must be transmitted before the data byte(s). The order of data transmission is shown in Figs 5 and 6.
Without auto-increment (BREN = 0 or 1) the module address (MAD) byte is followed by a Sub-Address (SAD) byte and one data byte only (see Fig.5).

Video processor with automatic cut-off and white level control

Fig. 4 The module address byte.

Fig. 5 Data transmission without auto-increment (BREN $=0$ or 1).

Fig. 6 Data transmission with auto-increment $(\mathrm{BREN}=0)$.

Video processor with automatic cut-off and white level control

Auto-increment

The auto-increment format enables quick slave receiver initialization by one transmission, when the $I^{2} \mathrm{C}$-bus control bit BREN = 0 (see control register bits of Table 1).
If $B R E N=1$ auto-increment is not possible.
If the auto-increment format is selected, the MAD byte is followed by a SAD byte and by the data bytes of consecutive sub-addresses (Fig.6).
All sub-addresses from 00 H to 0 FH are automatically incremented, the sub-address counter wraps round from 0FH to 00H. Reserved sub-addresses 0BH, 0EH and 0FH are treated as legal but have no effect. Sub-addresses outside the range 00 H and 0 FH are not acknowledged by the device and neither auto-increment nor any other internal operation takes place (for versions V1 to V5 sub-addresses outside the range 00 H and 0 FH are acknowledged but neither auto-increment nor any other internal operation takes place).

Sub-addresses are stored in the TDA4680 to address the following parameters and functions (see Table 1):

- Brightness adjust
- Saturation adjust
- Contrast adjust
- Hue control voltage
- RGB gain adjust
- RGB reference voltage levels
- Peak drive limiting adjust
- Control register functions.

The data bytes D7 to D0 (see Table 1) provide the data of the parameters and functions for video processing.

Control register 1

VBWx (Vertical Blanking Window):
$x=0,1$ or 2 . VBW x selects the vertical blanking interval and positions the measurement lines for cut-off and white level control.

The actual lines in the vertical blanking interval after the start of the vertical pulses selected as measurement lines for cut-off and white level control are shown in Table 2.

The standards marked with (*) are for progressive line scan at double line frequency ($2 \mathrm{f}_{\mathrm{L}}$), i.e. approximately 31 kHz .

NMEN (NTSC Matrix Enable):

$0=$ PAL/SECAM matrix
1 = NTSC matrix.

WPEN (White Pulse Enable):
$0=$ white measuring pulse disabled
$1=$ white measuring pulse enabled.
BREN (Buffer Register Enable):
$0=$ new data is executed as soon as it is received
1 = data is stored in buffer registers and is transferred to the data registers during the next vertical blanking interval.
The $\mathrm{I}^{2} \mathrm{C}$-bus transceiver does not accept any new data until this data is transferred into the data registers.

DELOF (Delay Off) delays the leading edge of clamping pulses:

0 = delay enabled
1 = delay disabled.
SC5 (SandCastle 5 V):
$0=3$-level sandcastle pulse
$1=2$-level (5 V) sandcastle pulse.

Control register 2

FSON2 (Fast Switch 2 ON)
FSDIS2 (Fast Switch 2 Disable)
FSON1 (Fast Switch 1 ON)
FSDIS1 (Fast Switch 1 Disable)
The RGB input signals are selected by FSON2 and FSON1 or FSW_{2} and FSW_{1} :

- FSON2 has priority over FSON1
- FSW_{2} has priority over FSW_{1}
- FSDIS1 and FSDIS2 disable FSW 1 and FSW 2 (see Table 3).
BCOF (Black level Control Off):
$0=$ automatic cut-off control enabled
1 = automatic cut-off control disabled; RGB outputs are clamped to fixed DC levels.
FSBL (Full Screen Black Level):
0 = normal mode
1 = full screen black level (cut-off measurement level during full field).

FSWL (Full Screen White Level):
0 = normal mode
1 = full screen white level (white measurement level during full field).

Video processor with automatic cut-off and white level control

SATOF (Saturation control Off):
0 = saturation control enabled
1 = saturation control disabled, nominal saturation enabled.
$I^{2} \mathrm{C}$-bus transmitter (microcontroller read mode)
As an ${ }^{2} \mathrm{C}$-bus transmitter, $\mathrm{R} / \overline{\mathrm{W}}=1$, the TDA4680 sends a data byte from the status register to the microcontroller. The data byte consists of following bits: PONRES, CB1, CB0, CG1, CG0, CR1, CR0 and 0, where PONRES is the most significant bit.

PONRES (Power On Reset) monitors the state of TDA4680's supply voltage:

0 = normal operation
1 = supply voltage has dropped below approximately 6.0 V (usually occurs when the TV receiver is switched on or the supply voltage was interrupted).

When PONRES changes state from a logic LOW to a logic HIGH all data and function bits are set to logic LOW.

2-BIT WHITE LEVEL ERROR SIGNAL (see Table 4)
CB1, CB0 = 2-bit white level of the blue channel.
CG1, CG0 = 2-bit white level of the green channel.
$C R 1, C R 0=2$-bit white level of the red channel.

Table 1 Sub-address (SAD) and data bytes; note 1

FUNCTION	$\begin{aligned} & \text { SAD } \\ & \text { (HEX) } \end{aligned}$	MSB							LSB
		D7	D6	D5	D4	D3	D2	D1	D0
Brightness	00	0	0	A05	A04	A03	A02	A01	A00
Saturation	01	0	0	A15	A14	A13	A12	A11	A10
Contrast	02	0	0	A25	A24	A23	A22	A21	A20
Hue control voltage	03	0	0	A35	A34	A33	A32	A31	A30
Red gain	04	0	0	A45	A44	A43	A42	A41	A40
Green gain	05	0	0	A55	A54	A53	A52	A51	A50
Blue gain	06	0	0	A65	A64	A63	A62	A61	A60
Red level reference	07	0	0	A75	A74	A73	A72	A71	A70
Green level reference	08	0	0	A85	A84	A83	A82	A81	A80
Blue level reference	09	0	0	A95	A94	A93	A92	A91	A90
Peak drive limit	0A	0	0	AA5	AA4	AA3	AA2	AA1	AA0
Reserved	OB	X	X	X	X	X	X	X	X
Control register 1	OC	SC5	DELOF	BREN	WPEN	NMEN	VBW2	VBW1	VBW0
Control register 2	OD	SATOF	FSWL	FSBL	BCOF	FSDIS2	FSON2	FSDIS1	FSON1
Reserved	0E	X	X	X	X	X	X	X	X
Reserved	OF	X	X	X	X	X	X	X	X

Note

1. $X=$ don't care.

Video processor with automatic cut-off and white level control

Table 2 Cut-off and white level measurement lines; notes 1 to 3

VBW2	VBW1	VBW0	R	G	B	WHITE	STANDARD
0	0	0	19	20	21	22	PAL/SECAM
0	0	1	16	17	18	19	NTSC/PAL M
0	1	0	22	23	24	25	PAL/SECAM (EB)
1	0	0	38, 39	40, 41	42, 43	44, 45	PAL*/SECAM ${ }^{*}$
1	0	1	32, 33	34, 35	36, 37	38, 39	NTSC*/PAL M*
1	1	0	44, 45	46, 47	48, 49	50, 51	PAL*/SECAM* (EB)

Notes

1. The line numbers given are those of the horizontal pulse counts after the start of the vertical component of the sandcastle pulse.
2. * line frequency of approximately 31 kHz .
3. (EB) is extended blanking.

Table 3 Signal input selection by the fast source switches; notes 1 to 4

$I^{2} \mathrm{C}-\mathrm{BUS}$ CONTROL BITS				ANALOG SWITCH SIGNALS		INPUT SELECTED		
FSON2	FSDIS2	FSON1	FSDIS1	FSW ${ }_{2}$ (PIN 1)	FSW 1 (PIN 13)	RGB_{2}	RGB_{1}	Y/CD
L	L	L	L	L	L			ON
				L	H		ON	
				H	X	ON		
L	L	L	H	L	X			ON
				H	X	ON		
L	L	H	X	L	X		ON	
				H	X	ON		
L	H	L	L	X	L			ON
				X	H		ON	
L	H	L	H	X	X			ON
L	H	H	X	X	X		ON	
H	X	X	X	X	X	ON		

Notes

1. H: logical HIGH implies that the voltage $>0.9 \mathrm{~V}$.
2. L: logical LOW implies that the voltage $<0.4 \mathrm{~V}$.
3. $X=$ don't care.
4. ON indicates the selected input signal.

Video processor with automatic cut-off and white level control

Table 4 2-bit white level error signals; bits CX1 and CX0

CX1	CX0	
0	0	RAR (Reset-After-Read): no new measurements since last read
1	0	actual (measured) white level less than the tolerance range
1	1	actual (measured) white level within the tolerance range
0	1	actual (measured) white level greater than the tolerance range

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL		MIN.	MAX.	UNIT
V_{P}	supply voltage (pin 5)	-	8.8	V
$\mathrm{~V}_{\mathrm{i}}$	input voltage (pins 1 to 8, 10 to 13, 16, 21, 23 and 25)	-0.1	$+\mathrm{V}_{\mathrm{P}}$	V
	input voltage (pins 14, 15, 18 and 19)	-0.7	$\mathrm{~V}_{\mathrm{P}}+0.7$	V
	input voltage (pins 27 and 28)	-0.1	+8.8	V
	average current (pins 20, 22 and 24)	+4	-10	mA
	peak current (pins 20, 22 and 24)	+4	-20	mA
	input current	0	2	mA
	output current	+0.5	-8	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature	-20	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	0	70	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	1.2	W

Video processor with automatic cut-off and white level control

CHARACTERISTICS

All voltages are measured in test circuit of Fig. 10 with respect to GND (pin 9); $\mathrm{V}_{\mathrm{P}}=8.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; nominal signal amplitudes (black-to-white) at output pins 24, 22 and 20; nominal settings of brightness, contrast, saturation and white level control; without beam current or peak drive limiting; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply (pin 5)						
V_{P}	supply voltage		7.2	8.0	8.8	V
IP	supply current		-	85	110	mA
Colour difference inputs [-(B-Y): pin 6; -($\mathbf{R}-\mathrm{Y}$): pin 7]						
$\mathrm{V}_{6(p-p)}$	-(B-Y) input (peak-to-peak value)	notes 1 and 2	-	1.33	-	V
$V_{7(p-p)}$	-($\mathrm{R}-\mathrm{Y}$) signal (peak-to-peak value)	notes 1 and 2	-	1.05	-	V
$\mathrm{V}_{6,7}$	internal DC bias voltage	at black level clamping	-	3.1	-	V
$\left\|I_{6,7}\right\|$	input current	during line scan	-	-	0.15	$\mu \mathrm{A}$
		at black level clamping	100	-	-	$\mu \mathrm{A}$
$\mathrm{R}_{6,7}$	AC input resistance		10	-	-	$\mathrm{M} \Omega$
Luminance/sync (VBS; Y: pin 8)						
$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	luminance input voltage at pin 8 (peak-to-peak value)	note 2	-	0.45	-	V
$\mathrm{V}_{8 \text { (bias) }}$	internal DC bias voltage	at black level clamping	-	3.1	-	V
$\left\|\mathrm{I}_{8}\right\|$	input current	during line scan	-	-	0.15	$\mu \mathrm{A}$
		at black level clamping	100	-	-	$\mu \mathrm{A}$
R_{8}	AC input resistance		10	-	-	$\mathrm{M} \Omega$
RGB input 1 (R_{1} : pin 10; G_{1} : pin 11; B_{1} : pin 12)						
$V_{i(p-p)}$	input voltage at pins 10, 11 and 12 (peak-to-peak value)	note 2	-	0.7	-	V
$\mathrm{V}_{10 / 11 / 12 \text { (bias) }}$	internal DC bias voltage	at black level clamping	-	5.4	-	V
$\left\|I_{10 / 11 / 12}\right\|$	input current	during line scan	-	-	0.15	$\mu \mathrm{A}$
		at black level clamping	100	-	-	$\mu \mathrm{A}$
$\mathrm{R}_{10 / 11 / 12}$	AC input resistance		10	-	-	$\mathrm{M} \Omega$
RGB input 2 (R_{2} : pin $2, \mathrm{G}_{2}$: pin 3, B_{2} : $\operatorname{pin} 4$)						
$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	input voltage at pins 2, 3 and 4 (peak-to-peak value)	note 2	-	0.7	-	V
$\mathrm{V}_{2 / 3 / 4}$	internal DC bias voltage	at black level clamping	-	5.4	-	V
$\left\|\left.\right\|_{2 / 3 / 4}\right\|$	input current	during line scan	-	-	0.15	$\mu \mathrm{A}$
		at black level clamping	100	-	-	$\mu \mathrm{A}$
$\mathrm{R}_{2 / 3 / 4}$	AC input resistance		10	-	-	$\mathrm{M} \Omega$

Video processor with automatic cut-off and white level control

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Fast signal switch $\mathrm{FSW}_{1}(\mathbf{p i n} 13)$ to select Y, CD or $\mathrm{R}_{1}, \mathrm{G}_{1}, \mathrm{~B}_{1}$ inputs (control bits: see Table 3)						
V_{13}	voltage to select Y and CD		-	-	0.4	V
	voltage range to select $\mathrm{R}_{1}, \mathrm{G}_{1}, B_{1}$		0.9	-	5.0	V
R_{13}	internal resistance to ground		-	4.0	-	$\mathrm{k} \Omega$
$\Delta \mathrm{t}$	difference between transit times for signal switching and signal insertion		-	-	10	ns

Fast signal switch FSW $_{2}$ (pin 1) to select $\mathbf{Y}, \mathbf{C D} / \mathbf{R}_{\mathbf{1}}, \mathbf{G}_{\mathbf{1}}, \mathbf{B}_{\mathbf{1}}$ or $\mathbf{R}_{\mathbf{2}}, \mathbf{G}_{\mathbf{2}}, \mathbf{B}_{\mathbf{2}}$ inputs (control bits: see Table 3)

V_{1}	voltage to select $\mathrm{Y}, \mathrm{CD} / \mathrm{R}_{1}, \mathrm{G}_{1}, \mathrm{~B}_{1}$		-	-	0.4	V
	voltage to select $\mathrm{R}_{2}, \mathrm{G}_{2}, \mathrm{~B}_{2}$		0.9	-	5.0	V
R_{1}	internal resistance to ground		-	4.0	-	$\mathrm{k} \Omega$
$\Delta \mathrm{t}$	difference between transit times for signal switching and signal insertion		-	-	10	ns

Saturation adjust [acts on internal RGB signals under ${ }^{2} \mathrm{C}$-bus control; sub-address 01 H (bit resolution 1.5% of maximum saturation); data byte 3 FH for maximum saturation, data byte 23 H for nominal saturation and data byte 00 H for minimum saturation]

d_{s}	saturation below maximum	at 23 H	-	5	-	dB
		at $00 \mathrm{H} ; \mathrm{f}=100 \mathrm{kHz}$	-	50	-	dB

Contrast adjust [acts on internal RGB signals under $I^{2} \mathrm{C}$-bus control; sub-address $\mathbf{0 2 H}$ (bit resolution 1.5% of maximum contrast); data byte 3FH for maximum contrast, data byte $\mathbf{2} \mathbf{C H}$ for nominal contrast and data byte 00H for minimum contrast]

d_{c}	contrast below maximum	at 2 CH	-	3	-	$d B$
	at 00 H	-	22	-	$d B$	

Brightness adjust [acts on internal RGB signals under $\mathrm{I}^{2} \mathrm{C}$-bus control; sub-address $\mathbf{0 0 H}$ (bit resolution 1.5% of brightness range); data byte 3FH for maximum brightness, data byte 27H for nominal brightness and data byte $\mathbf{0 0 H}$ for minimum brightness]

$\mathrm{d}_{\text {br }}$	black level shift of nominal signal amplitude referred to cut-off measurement level	at 3FH	-	30	-	$\%$
	at 00 H	-	-50	-	$\%$	

White potentiometers [under $\mathrm{I}^{2} \mathrm{C}$-bus control; sub-addresses 04 H (red), 05 H (green) and 06 H (blue); data byte 3FH for maximum gain; data byte $\mathbf{2 2 H}$ for nominal gain and data byte $\mathbf{0 0 H}$ for minimum gain]; note 3

$\Delta \mathrm{G}_{v}$	relative to nominal gain increase of AC gain decrease of AC gain	at 3FH		
at 00 H			\quad	-
:---				

Video processor with automatic cut-off and white level control

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT

RGB outputs (pins 24, 22 and 20; positive going output signals and no peak drive limitation; sub-address $0 \mathrm{AH}=3 \mathrm{FH}$); note 4

$\mathrm{V}_{\text {o(b-w) }}$	nominal output signals (black-to-white value)		-	2.0	-	V
	maximum output signals (black-to-white value)		3.2	-	-	V
$\Delta \mathrm{V}_{\text {o }}$	spread between RGB output signals		-	-	10	\%
V_{0}	output voltages		6.8	-	0.8	V
$\mathrm{V}_{24,22,20}$	voltage of cut-off measurement line	output clamping $(\mathrm{BCOF}=1)$	2.3	2.5	2.7	V
$\mathrm{l}_{\text {int }}$	internal current sources		-	5.0	-	mA
R_{0}	output resistance		-	65	110	Ω
Frequency response						
d	frequency response of Y path (from pin 8 to pins 24, 22, 20)	$\mathrm{f}=10 \mathrm{MHz}$	-	-	3	dB
	frequency response of CD path (from pins 7 to 24 and 6 to 20)	$\mathrm{f}=8 \mathrm{MHz}$	-	-	3	dB
	frequency response of RGB_{1} path (from pins 10 to 24, 11 to 22 and 12 to 20)	$\mathrm{f}=10 \mathrm{MHz}$	-	-	3	dB
	frequency response of RGB_{2} path (from pins 2 to 24, 3 to 22 and 4 to 20)	$\mathrm{f}=10 \mathrm{MHz}$	-	-	3	dB
Sandcastle pulse detector (pin 14)						
Control bit SC5 = 0; 3-LEVEL; notes 5 and 6						
V_{14}	sandcastle pulse voltage for horizontal and vertical blanking pulses for horizontal pulses (line count) for burst key pulses		$\begin{aligned} & 2.0 \\ & 4.0 \\ & 6.3 \end{aligned}$	2.5 4.5	$\begin{aligned} & 3.0 \\ & 5.0 \\ & V_{P}+0.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Control bit SC5 = 1; 2-LEVEL; note 5						
V_{14}	sandcastle pulse voltage for horizontal and vertical blanking pulses for burst key pulses		$\begin{array}{\|l} 2.0 \\ 4.0 \\ \hline \end{array}$	2.5 4.5	$\begin{aligned} & 3.0 \\ & V_{P}+0.7 \end{aligned}$	V V

Video processor with automatic cut-off and white level control

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
General						
I_{14}	input current	$\mathrm{V}_{14}<0.5 \mathrm{~V}$	-100	-	-	$\mu \mathrm{A}$
t_{d}	leading edge delay of the clamping pulse	control bit DELOF $=0$	-	1.5	-	$\mu \mathrm{s}$
		control bit DELOF = 1	-	0	-	$\mu \mathrm{s}$
t_{BK}	required burst key pulse time	control bit DELOF = 0 ; normally used with f_{L}	3	-	-	$\mu \mathrm{s}$
		control bit DELOF = 1; normally used with $2 \mathrm{f}_{\mathrm{L}}$	1.5	-	-	$\mu \mathrm{s}$
$\mathrm{n}_{\text {pulse }}$	required horizontal or burst key pulses during vertical blanking interval	e.g. at interlace scan (VBW2 = 0)	4	-	29	-
		e.g. at progressive line scan (VBW2 = 1)	8	-	57	-

Average beam current limiting (pin 15); note 7

$\mathrm{V}_{\mathrm{c}(15)}$	contrast reduction starting voltage		-	4.0	-	V
$\Delta \mathrm{V}_{\mathrm{c}(15)}$	voltage difference for full contrast reduction		-	-2.0	-	V
$\mathrm{V}_{\mathrm{br}(15)}$	brightness reduction starting voltage		-	2.5	-	V
$\Delta \mathrm{V}_{\mathrm{br}(15)}$	voltage difference for full brightness reduction		-	-1.6	-	V

Peak drive limiting voltage [pin 16; internal peak drive limiting level ($\mathrm{V}_{\text {pdI }}$) acts on RGB outputs under $\mathbf{I}^{2} \mathrm{C}$-bus control; sub-address OAH]; note 8

$\mathrm{V}_{20 / 22 / 24}$	RGB output voltages	at 00 H	-	-	3.0	V
		at 3FH	6.5	-	-	V
I_{16}	charge current		-	-1	-	$\mu \mathrm{A}$
	discharge current	during peak white	-	5	-	mA
V_{16}	internal voltage limitation		4.5	-	-	V
$\mathrm{V}_{\mathrm{C}(16)}$	contrast reduction starting voltage		-	4.0	-	V
$\Delta \mathrm{V}_{\mathrm{c}(16)}$	voltage difference for full contrast reduction		-	-2.0	-	V
$\mathrm{V}_{\mathrm{br} \text { (16) }}$	brightness reduction starting voltage		-	2.5	-	V
$\Delta \mathrm{V}_{\text {br(16) }}$	voltage difference for full brightness reduction		-	-1.6	-	V

Video processor with automatic cut-off and white level control

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT

Automatic cut-off and white level control (pins 19 and 18); notes 9 to 11; see Fig. 8

V_{19}	permissible voltage (also during scanning period)		-	-	$\mathrm{V}_{\mathrm{P}}-1.4$	V
I_{19}	output current		-	-	-140	$\mu \mathrm{A}$
	input current		150	-	-	$\mu \mathrm{A}$
	additional input current	only during warming up	-	0.5	-	mA
$\mathrm{V}_{24,22,20}$	warming up amplitude (under $\mathrm{I}^{2} \mathrm{C}$-bus control; sub-address 0AH)	switch-on delay 1	-	$\mathrm{V}_{\text {pdl }}-0.7$	-	V
$\mathrm{V}_{19 \text { (th) }}$	voltage threshold for picture tube cathode warming up	switch-on delay 1	-	5.0	-	V
$\mathrm{V}_{\text {ref }}$	internally controlled voltage	during leakage measurement period	-	3.0	-	V

Data byte 07H for red reference level, data byte 08H for green reference level and data byte 09H for blue Reference level

$\Delta \mathrm{V}_{19}$	difference between $\mathrm{V}_{\text {MEAS }}$ (cut-off or white level measurement voltage) and $V_{\text {ref }}$	3FH (maximum $\mathrm{V}_{\text {MEAS }}$)	1.5	-	-	V
		20 H (nominal $\mathrm{V}_{\text {MEAS }}$)	-	1.0	-	V
		OOH (minimum $\mathrm{V}_{\text {MEAS }}$)	-	-	0.5	V
I_{18}	input current	white level measurement	-	-	800	$\mu \mathrm{A}$
R_{18}	internal resistance	to $\mathrm{V}_{\text {ref }} ; \mathrm{I}_{18} \leq 800 \mu \mathrm{~A}$	-	100	-	Ω
$\Delta \mathrm{V}_{19}$	white level register (measured value within tolerance range)	white level measurement	-	250	-	mV

Storage of cut-off control voltage/output clamping voltage (pins 25, 23 and 21)

$\left\|\mathrm{I}_{21 / 23 / 25}\right\|$	charge and discharge currents	during cut-off measurement lines	-	0.3	-	mA
	input currents of storage inputs	outside measurement time	-	-	0.1	$\mu \mathrm{~A}$

Storage of leakage information (pin 17)

$\mathrm{I}_{17} \mid$ charge and discharge currents		during leakage measurement period	-	0.4	-	mA
	leakage current	outside time LM	-	-	0.1	$\mu \mathrm{~A}$
$\mathrm{~V}_{17}$	voltage for reset to switch-on below		-	-	3.0	V

Hue control (under I^{2} C-bus control; sub-address 03 H ; data byte 3 FH for maximum voltage; data byte $\mathbf{2 0 H}$ for nominal voltage and data byte $\mathbf{0 0 H}$ for minimum voltage); note 12

V_{26}	output voltage	at 3FH	4.8	-	-	V
		at 20 H	-	3.0	-	V
		at 00 H	-	-	1.0	V
lint	current of the internal current source at pin 26		500	-	-	$\mu \mathrm{A}$

Video processor with automatic cut-off and white level control

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{I}^{2} \mathrm{C}$-bus transceiver clock SCL (pin 28)						
$\mathrm{f}_{\text {SCL }}$	input frequency range		0	-	100	kHz
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-	-	1.5	V
V_{IH}	HIGH level input voltage		3.0	-	6.0	V
$\mathrm{I}_{\text {IL }}$	LOW level input current	$\mathrm{V}_{28}=0.4 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	HIGH level input current		-	-	10	$\mu \mathrm{A}$
t_{L}	clock pulse LOW		4.7	-	-	$\mu \mathrm{s}$
t_{H}	clock pulse HIGH		4.0	-	-	$\mu \mathrm{s}$
t_{r}	rise time		-	-	1.0	$\mu \mathrm{s}$
t_{f}	fall time		-	-	0.3	$\mu \mathrm{s}$

I ${ }^{2}$ C-bus transceiver data input/output SDA (pin 27)

V_{IL}	LOW level input voltage		-	-	1.5	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH level input voltage		3.0	-	6.0	V
I_{IL}	LOW level input current	$\mathrm{V}_{27}=0.4 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
I_{IH}	HIGH level input current		-	-	10	$\mu \mathrm{~A}$
I_{OL}	LOW level output current	$\mathrm{V}_{27}=0.4 \mathrm{~V}$	3.0	-	-	mA
t_{r}	rise time		-	-	1.0	$\mu \mathrm{~s}$
t_{f}	fall time		-	-	0.3	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {SU; } \mathrm{DAT}}$	data set-up time		0.25	-	-	$\mu \mathrm{s}$

Notes to the characteristics

1. The values of the $-(B-Y)$ and $-(R-Y)$ colour difference input signals are for a 75% colour-bar signal.
2. The pins are capacitively coupled to a low ohmic source, with a recommended maximum output impedance of 600Ω.
3. The white potentiometers affect the amplitudes of the RGB output signals including the white measurement pulses.
4. The RGB outputs at pins 24,22 and 20 are emitter followers with current sources.
5. Sandcastle pulses are compared with internal threshold voltages independent of V_{p}. The threshold voltages separate the components of the sandcastle pulse. The particular component is generated when the voltage on pin 14 exceeds the defined internal threshold voltage.
The internal threshold voltages (control bit SC5 $=0$) are:
1.5 V for horizontal and vertical blanking pulses
3.5 V for horizontal pulses
6.0 V for the burst key pulse.

The internal threshold voltages (control bit SC5 = 1) are:
1.5 V for horizontal and vertical blanking pulses
3.5 V for the burst key pulse.
6. A sandcastle pulse with a maximum voltage equal to $\left(V_{P}+0.7 \mathrm{~V}\right)$ is obtained by limiting a 12 V sandcastle pulse.
7. Average beam current limiting reduces the contrast, at minimum contrast it reduces the brightness.
8. Peak drive limiting reduces the RGB outputs by reducing the contrast, at minimum contrast it reduces the brightness. The maximum RGB outputs are determined via the $I^{2} \mathrm{C}$-bus under sub-address 0 AH . When an RGB output exceeds the maximum voltage, peak drive limiting is delayed by one horizontal line.

Video processor with automatic cut-off and white level control
9. The vertical blanking interval is defined by a vertical pulse which contains 4 (8) or more horizontal pulses; it begins with the start of the vertical pulse and ends with the end of the white measuring line. If the vertical pulse is longer than the selected vertical blanking window the blanking period ends with the end of the complete line after the end of the vertical pulse. The counter cycle time is 31 (63) horizontal pulses. If the vertical pulse contains more than 29 (57) horizontal pulses, the black level storage capacitors will be discharged while all signals are blanked. During leakage current measurement, the RGB channels are blanked to ultra-black level. During cut-off measurement one channel is set to the measurement pulse level, the other channels are blanked to ultra-black. Since the brightness adjust shifts the colour signal relative to the black level, the brightness adjust is disabled during the vertical blanking interval (see Figs 7 and 8).
10. During picture cathode warming up (first switch-on delay) the RGB outputs (pins 24, 22 and 20) are blanked to the ultra-black level during line scan. During the vertical blanking interval a white-level monitor pulse is fed out on the RGB outputs and the cathode currents are measured. When the voltage threshold on pin 19 is greater than 5.0 V , the monitor pulse is switched off and cut-off and white level control are activated (second switch-on delay). As soon as cut-off control stabilizes, RGB output blanking is removed.
11. Range of cut-off measurement level at the RGB outputs is 1 to 5 V . The recommended value is 3 V .
12. The hue control output at pin 26 is an emitter follower with current source.

Table 5 Demodulator axes and amplification factors

PARAMETER	NTSC	PAL
$(B-Y)^{\star}$ demodulator axis	0°	0°
$(R-Y)^{\star}$ demodulator axis	115°	90°
$(R-Y)^{\star}$ amplification factor	1.97	1.14
$(B-Y)^{*}$ amplification factor	2.03	2.03

Table 6 PAL/SECAM and NTSC matrix; notes 1 and 2

MATRIX	NMEN
PAL/SECAM	0
NTSC	1

Notes

1. PAL/SECAM signals are matrixed by the equation: $\mathrm{V}_{\mathrm{G}-\mathrm{Y}}=-0.51 \mathrm{~V}_{\mathrm{R}-\mathrm{Y}}-0.19 \mathrm{~V}_{\mathrm{B}-\mathrm{Y}}$

NTSC signals are matrixed by the equations (hue phase shift of -5 degrees):
$V_{R-Y^{*}}=1.57 \mathrm{~V}_{R-Y}-0.41 \mathrm{~V}_{B-Y} ; \mathrm{V}_{G-Y^{*}}=-0.43 \mathrm{~V}_{R-Y}-0.11 \mathrm{~V}_{\mathrm{B}-\mathrm{Y}} ; \mathrm{V}_{\mathrm{B}-\mathrm{Y}^{*}}=\mathrm{V}_{\mathrm{B}-\mathrm{Y}}$
In the matrix equations: V_{R-Y} and V_{B-Y} are conventional PAL demodulation axes and amplitudes at the output of the NTSC demodulator. $V_{G-Y^{*}}, V_{R-Y^{*}}$ and $V_{B-Y^{*}}$ are the NTSC-modified colour difference signals; this is equivalent to the demodulator axes and amplification factors shown in Table 5. $\mathrm{V}_{\mathrm{G}-\mathrm{Y}^{*}}=-0.27 \mathrm{~V}_{\mathrm{R}}-\mathrm{Y}^{*}-0.22 \mathrm{~V}_{\mathrm{B}}-\mathrm{Y}^{*}$.
2. The vertical blanking interval is selected via the $\mathrm{I}^{2} \mathrm{C}$-bus (see Table 2 and Fig.8). Vertical blanking is determined by the vertical component of the sandcastle pulse; this vertical component has priority when it is longer than the vertical blanking interval of the transmission standard.

Video processor with automatic cut-off and white level control

Fig. 7 Cut-off and white level measurement pulses.

Fig. 8 Leakage current, cut-off and white level current measurement timing diagram.

Video processor with automatic cut-off and white level control

INTERNAL PIN CONFIGURATION

Video processor with automatic cut-off and white level control

Video processor with automatic cut-off and white level control

PACKAGE OUTLINES

DIP28: plastic dual in-line package; 28 leads (600 mil)
SOT117-1

UNIT	$\underset{\max .}{A}$	A_{1} min.	\mathbf{A}_{2} max.	b	b_{1}	C	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	M_{H}	W	$Z^{(1)}$
mm	5.1	0.51	4.0	$\begin{aligned} & 1.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.7 \end{aligned}$	2.54	15.24	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 15.80 \\ & 15.24 \end{aligned}$	$\begin{aligned} & 17.15 \\ & 15.90 \end{aligned}$	0.25	1.7
inches	0.20	0.020	0.16	$\begin{aligned} & 0.066 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.34 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.54 \end{aligned}$	0.10	0.60	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.63 \end{aligned}$	0.01	0.067

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT117-1	051G05	MO-015AH		\square	$\begin{aligned} & 92-11-17 \\ & 95-01-14 \end{aligned}$

Video processor with automatic cut-off and white level control

detail X

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	A	$\begin{gathered} \mathbf{A}_{1} \\ \mathrm{~min} . \end{gathered}$	A_{3}	A_{4} max.	b_{p}	b_{1}	$D^{(1)}$	$E^{(1)}$	e	ed	$\mathbf{e f}^{\text {E }}$	H_{D}	H_{E}	k	$\begin{gathered} \mathrm{k}_{1} \\ \max . \end{gathered}$	L_{p}	v	w	y	$\begin{aligned} & Z_{D}{ }^{(1)} \\ & \max \end{aligned}$	$\begin{aligned} & Z_{E}^{(1)} \\ & \max \end{aligned}$	β
mm	$\begin{aligned} & 4.57 \\ & 4.19 \end{aligned}$	0.51	0.25	3.05	$\begin{aligned} & 0.53 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.66 \end{aligned}$	$\begin{aligned} & 11.58 \\ & 11.43 \end{aligned}$	$\begin{aligned} & 11.58 \\ & 11.43 \end{aligned}$	1.27	$\begin{gathered} 10.92 \\ 9.91 \end{gathered}$	$\begin{gathered} 10.92 \\ 9.91 \end{gathered}$	$\begin{aligned} & 12.57 \\ & 12.32 \end{aligned}$	$\begin{aligned} & 12.57 \\ & 12.32 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.07 \end{aligned}$	0.51	$\begin{aligned} & 1.44 \\ & 1.02 \end{aligned}$	0.18	0.18	0.10	2.16	2.16	
inches	$\begin{array}{\|l\|} \hline 0.180 \\ 0.165 \end{array}$	0.020	0.01	0.12	$\begin{array}{\|l\|} \hline 0.021 \\ 0.013 \end{array}$	$\begin{aligned} & 0.032 \\ & 0.026 \end{aligned}$	$\begin{aligned} & 0.456 \\ & 0.450 \end{aligned}$	$\begin{aligned} & 0.456 \\ & 0.450 \end{aligned}$	0.05	$\begin{aligned} & 0.430 \\ & 0.390 \end{aligned}$	$\begin{aligned} & 0.430 \\ & 0.390 \end{aligned}$	$\begin{aligned} & 0.495 \\ & 0.485 \end{aligned}$	$\begin{aligned} & 0.495 \\ & 0.485 \end{aligned}$	$\begin{aligned} & 0.048 \\ & 0.042 \end{aligned}$	0.020	$\begin{aligned} & 0.057 \\ & 0.040 \end{aligned}$	0.007	0.007	0.004	0.085	0.085	

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT261-2					$-92-11-17$	
$95-02-25$						

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

DIP

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

RePAIRING soldered Joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

PLCC

Reflow soldering

Reflow soldering techniques are suitable for all PLCC packages.
The choice of heating method may be influenced by larger PLCC packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our "Quality Reference Handbook" (order code 9397750 00192).

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all PLCC packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Video processor with automatic cut-off and white level control

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939839340011.
Video processor with automatic cut-off and white level control
Video processor with automatic cut-off and white level control

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 3288 2636, Fax. +45 31571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580/xxx
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +3014814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +603750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327

Portugal: see Spain

Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095247 9145, Fax. +7 0952479144
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27114705494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. +886 2382 4443, Fax. +886 23824444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1996
Internet: http://www.semiconductors.philips.com

SCA52
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands 537021/1200/02/pp28
Date of release: 1996 Oct 25
Document order number: 939775000946

Philips

Semiconductors

PHILIPS

