DATA SHEET

TDA4662 Baseband delay line

Product specification
File under Integrated Circuits, IC02

FEATURES

- Two comb filters, using the switched-capacitor technique, for one line delay time ($64 \mu \mathrm{~s}$)
- For PAL and NTSC
- Adjustment-free application
- Handles negative or positive colour-difference input signals
- Clamping of AC-coupled input signals $[\pm(\mathrm{R}-\mathrm{Y})$ and $\pm(\mathrm{B}-\mathrm{Y})$]
- VCO without external components
- 3 MHz internal clock signal derived from a 6 MHz CCO , line-locked by the sandcastle pulse ($64 \mu \mathrm{~s}$ line)
- Sample-and-hold circuits and low-pass filters to suppress the 3 MHz clock signal
- Addition of delayed and non-delayed output signals
- Output buffer amplifiers
- Comb filtering functions for NTSC colour-difference signals to suppress cross-colour.

GENERAL DESCRIPTION

The TDA4662 is an integrated baseband delay line circuit with one line delay. It is suitable for PAL and NTSC decoders with colour-difference signal outputs $\pm(\mathrm{R}-\mathrm{Y})$ and $\pm(B-Y)$.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{P} 1}$	analog supply voltage (pin 9)	4.5	5	6	V
$\mathrm{~V}_{\mathrm{P} 2}$	digital supply voltage (pin 1)	4.5	5	6	V
$\mathrm{I}_{\mathrm{P}(\text { tot })}$	total supply current	-	5.5	7.0	mA
$\mathrm{~V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	$\pm(\mathrm{R}-\mathrm{Y})$ input signal PAL/NTSC (peak-to-peak value; pin 16$)$	-	525	-	mV
	$\pm(\mathrm{B}-\mathrm{Y})$ input signal PAL/NTSC (peak-to-peak value; pin 14$)$	-	665	-	mV
G_{V}	voltage gain $\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{1}$ of colour-difference output signals				
	$\mathrm{V}_{11} / \mathrm{V}_{16}$ for PAL and NTSC	5.3	5.8	6.3	dB
	$\mathrm{~V}_{12} / \mathrm{V}_{14}$ for PAL and NTSC	5.3	5.8	6.3	dB

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA4662	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
TDA4662T	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1

BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION
$\mathrm{V}_{\text {P2 }}$	1	supply voltage for digital part (+5 V)
n.c.	2	not connected
GND2	3	ground for digital part (0 V)
i.c.	4	internally connected
SAND	5	sandcastle pulse input
n.c.	6	not connected
i.c.	7	internally connected
i.c.	8	internally connected
$\mathrm{V}_{\mathrm{P} 1}$	9	supply voltage for analog part (+5 V)
GND1	10	ground for analog part (0 V)
$\mathrm{V}_{0(R-Y)}$	11	$\pm(\mathrm{R}-\mathrm{Y})$ output signal
$\mathrm{V}_{0 \text { (B-Y) }}$	12	$\pm(\mathrm{B}-\mathrm{Y})$ output signal
n.c.	13	not connected
$\mathrm{V}_{\mathrm{i}(\mathrm{B}-\mathrm{Y})}$	14	$\pm(\mathrm{B}-\mathrm{Y})$ input signal
n.c.	15	not connected
$\mathrm{V}_{\mathrm{i}(\mathrm{R}-\mathrm{Y})}$	16	$\pm(\mathrm{R}-\mathrm{Y})$ input signal

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134). Ground pins 3 and 10 connected together.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{P} 1}$	supply voltage (pin 9)		-0.5	+7	V
$\mathrm{~V}_{\mathrm{P} 2}$	supply voltage (pin 1)		-0.5	+7	V
$\mathrm{~V}_{5}$	input voltage on pin 5		-0.5	$\mathrm{~V}_{\mathrm{P}}+1.0$	V
$\mathrm{~V}_{\mathrm{n}}$	voltage on pins 11, 12, 14 and 16		-0.5	$\mathrm{~V}_{\mathrm{P}}$	V
$\mathrm{T}_{\text {stg }}$	storage temperature		-25	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature		0	70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{ESD}}$	electrostatic handling for all pins	note 1	-	± 500	V

Note

1. Equivalent to discharging a 200 pF capacitor through a 0Ω series resistor.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$R_{\text {th } j \text {-a }}$	thermal resistance from junction to ambient in free air		
	SOT38-4	75	K/W
	SOT109-1	220	K/W

CHARACTERISTICS

$V_{P}=5 \mathrm{~V}$; input signals as specified in characteristics with 75% colour bars; super-sandcastle frequency of 15.625 kHz ; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measurements taken in Fig.3; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {P1 }}$	analog supply voltage (pin 9)		4.5	5	6	V
$\mathrm{V}_{\mathrm{P} 2}$	digital supply voltage (pin 1)		4.5	5	6	V
$\mathrm{I}_{\text {P1 }}$	analog supply current (pin 9)		-	4.8	6.0	mA
$\mathrm{I}_{\text {P2 }}$	digital supply current (pin 1)		-	0.7	1.0	mA

Colour-difference input signals

$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	input signal (peak-to-peak value) $\pm(\mathrm{R}-\mathrm{Y})$ PAL and NTSC (pin 16) $\pm(\mathrm{B}-\mathrm{Y})$ PAL and NTSC (pin 14)			$\begin{aligned} & 525 \\ & 665 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\mathrm{i}(\text { max } ; ~ p-p)}$	maximum symmetrical input signal (peak-to-peak value) $\pm(\mathrm{R}-\mathrm{Y})$ for PAL and NTSC $\pm(\mathrm{B}-\mathrm{Y})$ for PAL and NTSC	before clipping before clipping	$\begin{aligned} & 660 \\ & 840 \end{aligned}$	$\left.\right\|^{-}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{R}_{14,16}$	input resistance during clamping		-	-	40	$\mathrm{k} \Omega$
$\mathrm{C}_{14,16}$	input capacitance		-	-	10	pF
$\mathrm{V}_{14,16}$	input clamping voltage	proportional to V_{P}	1.3	1.5	1.7	V

Colour-difference output signals

$\mathrm{V}_{\mathrm{o}}(\mathrm{p}-\mathrm{p})$	```output signal (peak-to-peak value) \pm(R-Y) on pin 11 \pm(B-Y) on pin 12```		-	$\begin{aligned} & 1.05 \\ & 1.33 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{11} / \mathrm{V}_{12}$	ratio of output amplitudes at equal input signals	$\mathrm{V}_{\text {i14,16 }}=665 \mathrm{mV}$ (p-p)	-0.4	0	+0.4	dB
$\mathrm{V}_{11,12}$	DC output voltage	proportional to V_{P}	2.5	2.9	3.3	V
$\mathrm{R}_{11,12}$	output resistance		-	330	400	Ω
G_{v}	gain for PAL and NTSC	ratio $\mathrm{V}_{0} / \mathrm{V}_{\mathrm{i}}$	5.3	5.8	6.3	dB
$\mathrm{V}_{\mathrm{N} \text { (rms) }}$	noise voltage (RMS value; pins 11 and 12)	$\mathrm{V}_{\text {i14,16 }}=0 \mathrm{~V}$; note 1	-	-	1.2	mV
$\mathrm{V}_{11,12(\mathrm{p}-\mathrm{p})}$	unwanted signals (line-locked) (peak-to-peak value) meander spikes	$\mathrm{V}_{\text {i14,16 }}=0 \mathrm{~V}$; active video; $\mathrm{R}_{\mathrm{S}}=300 \Omega$	$-$	-	$\begin{aligned} & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
S/N(W)	weighted signal-to-noise ratio (pins 11 and 12)	$\mathrm{V}_{\mathrm{o}}=1 \mathrm{~V}(\mathrm{p}-\mathrm{p})$; note 1	-	54	-	dB
t_{d}	time difference between undelayed and delayed output signals (pins 11 and 12)		63.94	64	64.06	$\mu \mathrm{s}$
	delay of undelayed signals		40	60	80	ns

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Sandcastle pulse input (pin 5)						
f_{BK}	burst-key frequency/sandcastle frequency		14.2	15.625	17.0	kHz
V_{5}	top pulse voltage	note 2	4.0	-	$\mathrm{V}_{\mathrm{P}}+1.0$	V
$\mathrm{V}_{\text {slice }}$	internal slicing level		$\mathrm{V}_{5}-1.0$	-	$\mathrm{V}_{5}-0.5$	V
I_{5}	input current		-	-	10	$\mu \mathrm{A}$
C_{5}	input capacitance		-	-	10	pF

Notes

1. Noise voltage at $\mathrm{f}=10 \mathrm{kHz}$ to $1 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}<300 \Omega$.
2. The leading edge of the burst-key pulse or H -blanking pulse is used for timing.

APPLICATION INFORMATION

Fig. 3 Application circuit.

PACKAGE OUTLINES

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	$\underset{\mathbf{m i n}}{\mathbf{A}_{1}}$	A_{2} max.	b	b_{1}	b_{2}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	w	$\begin{gathered} \mathbf{Z}^{(1)} \\ \max . \end{gathered}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT38-4					$-92-11-17$	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{gathered} \hline 0.7 \\ 0.6 \end{gathered}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{array}{\|l\|} 0.0098 \\ 0.0039 \end{array}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\left.\begin{array}{\|l\|} 0.0098 \\ 0.0075 \end{array} \right\rvert\,$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.24 \\ & 0.23 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC		\square ¢	$\begin{aligned} & -91-08-13 \\ & 95-01-23 \end{aligned}$

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

DIP

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

SO

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Baseband delay line

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 3288 2636, Fax. +45 31571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580/xxx
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +3014814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +603750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327

Portugal: see Spain

Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095247 9145, Fax. +7 0952479144
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27114705494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. +886 2382 4443, Fax. +886 23824444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1996
Internet: http://www.semiconductors.philips.com

SCA52
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands 537021/1200/03/pp12
Date of release: 1996 Nov 14
Document order number: 939775001156

Philips
Semiconductors

PHILIPS

