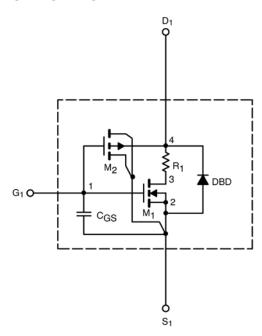


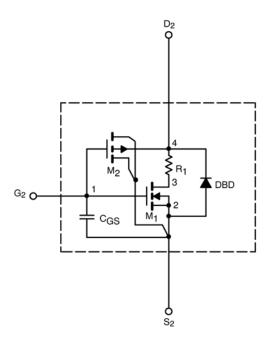
SPICE Device Model Si6866BDQ Vishay Siliconix

Dual N-Channel 2.5-V (G-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

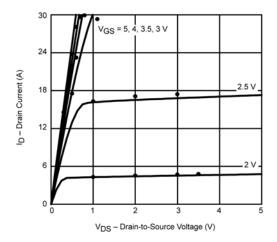
SUBCIRCUIT MODEL SCHEMATIC

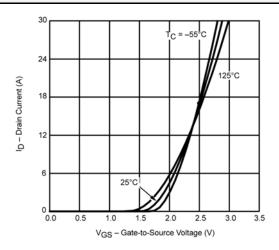
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

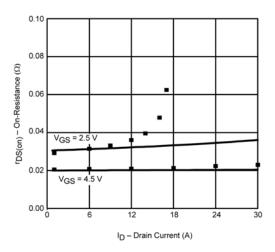
Document Number: 72703 www.vishay.com S-60146—Rev. B, 13-Feb-06

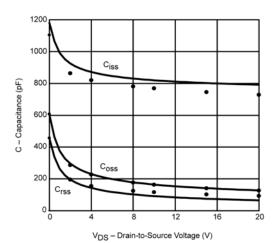
SPICE Device Model Si6866BDQ

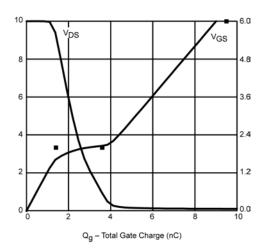
Vishay Siliconix


SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			-		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	115		Α
Drain-Source On-State Resistance ^a		V_{GS} = 4.5 V, I_{D} = 6 A	0.020	0.022	Ω
	r _{DS(on)}	V _{GS} = 2.5 V, I _D = 4.9 A	0.032	0.033	
Forward Transconductance ^a	g _{fs}	V _{DS} = 10 V, I _D = 6 A	21	25	
Forward Voltage ^a	V_{SD}	$I_S = 1.5 \text{ A}, V_{GS} = 0 \text{ V}$	0.80	0.75	V
Dynamic ^b	-		-		-
Total Gate Charge	Q_g	V _{DS} = 10 V, V _{GS} = 4.5 V, I _D = 6 A	7.2	7.5	nC
Gate-Source Charge	Q _{gs}		1.4	1.4	
Gate-Drain Charge	Q_{gd}		2.2	2.2	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 10 \text{ V, } R_L = 10 \Omega$ $I_D \cong \text{ 1 A, } V_{GEN} = 4.5 \text{ V, } R_G = 6 \Omega$	26	45	ns
Rise Time	t _r		38	53	
Turn-Off Delay Time	t _{d(off)}		30	30	
Fall Time	t_{f}		10	13	


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.


SPICE Device Model Si6866BDQ Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.