General Description

The AAT4290 and AAT4291 SmartSwitch products are members of AnalogicTech's Application Specific Power MOSFET ${ }^{\text {TM }}$ (ASPM ${ }^{\text {TM }}$) product family. The AAT4290 and AAT4291 are five and three P-channel MOSFETs, respectively, configured for use as a microprocessor I/O expander. Having independent drain outputs and a common source input, they operate with an input voltage ranging from 1.8 V to 5.5 V , making them ideal for $2.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or 5 V systems, as well as systems powered by lithium-ion/ polymer batteries. Each switch features a 500ns turn-on time. The switch states are controlled by AnalogicTech's Simple Serial Control ${ }^{T M}$ ($S^{2} C w i r e^{T M}$) interface which permits ease of control and efficiency of size. The quiescent supply current is very low, typically $4.5 \mu \mathrm{~A}$. In shutdown mode, the supply current is reduced to less than $1 \mu \mathrm{~A}$.

The AAT4290 and AAT4291 are offered in a Pb-free, 8 -pin SC70JW package specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- 1.8 V to 5.5 V Input Voltage Range
- 5 or 3 Independent Load Switches
- S^{2} Cwire Interface
- $1.1 \Omega \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Per Switch
- Low Quiescent Current
- $4.5 \mu \mathrm{~A}$ Typical
- $0.1 \mu \mathrm{~A}$ in Shutdown
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature Range
- 8-Pin SC70JW Package

Applications

- Cell Phones
- I/O Expansion
- Multiple Low Power Switching
- Personal Communication Devices
- Portable Electronic Devices

Typical Application

Pin Descriptions

Pin			
AAT4290	AAT4291	Symbol	Function
1	1	IN	Input power supply is connected to the P-channel MOSFET sources. Connect a $1 \mu \mathrm{~F}$ capaci- tor from IN to GND.
2	7	OUT2	P-channel MOSFET drain.
3	6	OUT1	P-channel MOSFET drain.
4	4	EN/SET	Input control pin using S ${ }^{2}$ Cwire serial interface. The device records rising edges of the clock and decodes them into 32 states (8 states for AAT4291) which controls the ON/OFF states of the MOSFETs. See Table 1 and Table 2 for output settings.
5	5	GND	Ground connection.
6	N/A	OUT5	P-channel MOSFET drain.
7	N/A	OUT4	P-channel MOSFET drain.
8	8	OUT3	P-channel MOSFET drain.
N/A	2,3	N/C	Not connected.

Pin Configuration

AAT4290
 SC70J W-8
 (Top View)

AAT4291

SC70J W-8
(Top View)

Absolute Maximum Ratings ${ }^{1}$

Symbol	Description	Value	Units
$\mathrm{V}_{\text {IN }}$	IN to GND	-0.3 to 6.0	V
$\mathrm{~V}_{\text {OUT }}$	OUT to GND	-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
$\mathrm{~V}_{\text {EN/SET }}$	EN/SET to GND	-0.3 to 6.0	V
$\mathrm{I}_{\text {MAX }}$	Maximum Continuous Switch Current	250	mA
$\mathrm{~T}_{\text {STORAGE }}$	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Rating $-\mathrm{HBM}^{2}$	4000	V

Thermal Characteristics

Symbol	Description	Value	Units
$\theta_{\text {JA }}$	Thermal Resistance ${ }^{3}$	225	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Maximum Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{4}$	440	mW

[^0]
Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Description	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}$	Operation Voltage		1.8		5.5	V
I_{Q}	Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{EN} / \mathrm{SET}=\mathrm{V}_{\text {IN }}, \mathrm{I}_{\text {out }}=0$, All Switches ON		4.5	8	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(OFF) }}$	Off Supply Current	EN/SET $=0, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}$ Open			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD(OFF) }}$	Off Switch Current	$\mathrm{EN} / \mathrm{SET}=0, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUTn }}=0$		0.1	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {UvLo }}$	Under-Voltage Lockout	$\mathrm{V}_{\text {IN }}$ Falling		1.2		V
$\mathrm{V}_{\text {UvLo(hys) }}$	Under-Voltage Lockout Hysteresis			250		mV
$\mathrm{R}_{\mathrm{dS}(\mathrm{ON})}$	On Resistance	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.5	3.8	Ω
		$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	2.2	
		$\mathrm{V}_{\text {IN }}=4.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.2	1.8	
		$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.1	1.7	
$\mathrm{T}_{\text {cRDS }}$	On Resistance Temperature Coefficient			2800		$\mathrm{ppm}^{\circ} \mathrm{C}$
AAT4290-1 and AAT4291-1						
$\mathrm{T}_{\mathrm{D} \text { (ON) }}$	Output Turn-On Delay Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=500 \Omega, \mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}$		40		ns
TR	Turn-On Rise Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=500 \Omega, \mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}$		270		ns
$\mathrm{T}_{\text {D(OFF) }}$	Turn-Off Delay Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=500 \Omega$		40		ns
EN/ SET						
$\mathrm{V}_{\text {EN(L) }}$	Enable Threshold Low	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$			0.4	V
$\mathrm{V}_{\text {EN(H) }}$	Enable Threshold High	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	1.6			V
To	EN/SET Low Time	$\mathrm{V}_{\text {EN/SET }}<0.4 \mathrm{~V}$	100			ns
T_{HI}	Minimum EN/SET High Time	$\mathrm{V}_{\text {IN }} \leq 2.5 \mathrm{~V}$			500	ns
		$\mathrm{V}_{\text {IN }}>2.5 \mathrm{~V}$			250	
T_{0}	EN/SET Off Timeout			2.6	4.0	$\mu \mathrm{s}$
$\mathrm{T}_{\text {Lat }}$	EN/SET Latch Timeout			2.6	4.0	$\mu \mathrm{s}$
$\mathrm{I}_{\text {SIINK }}$	EN/SET Input Leakage	$\mathrm{V}_{\text {EN/SET }}=5.5 \mathrm{~V}$		0.01	1	$\mu \mathrm{A}$

[^1]
Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUTX }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Quiescent Current vs. Temperature

V_{IH} and V_{IL} vs. Input Voltage

$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. Temperature

Quiescent Current vs. Input Voltage

$\mathrm{R}_{\mathrm{DS}\left(\mathrm{ON}^{\prime}\right)}$ vs. Input Voltage

$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. Temperature

SmartSwitch ${ }^{\text {TM }}$

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUTX }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

EN/SET Latch Timeout vs. Temperature

EN/SET Timeout vs. Input Voltage

Turn-On Characteristic
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=50 \Omega ; \mathrm{C}_{01}=\mathrm{C}_{02}=0.1 \mu \mathrm{~F}\right)$

Time ($2 \mu \mathrm{~s} / \mathrm{div}$)

EN/SET Off Timeout vs. Temperature

Turn-On Characteristic $\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=50 \Omega ; \mathrm{C}_{\mathrm{O} 1}=\mathrm{C}_{\mathrm{O} 2}=0.1 \mu \mathrm{~F}\right)$

Turn-On Characteristic
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=50 \Omega ; \mathrm{C}_{\mathrm{O} 1}=\mathrm{C}_{\mathrm{O} 2}=0.1 \mu \mathrm{~F}\right)$

Time ($2 \mu \mathrm{~s} / \mathrm{div}$)

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUTX }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Turn-On Characteristic
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=50 \Omega ; \mathrm{C}_{01}=\mathrm{C}_{02}=0.1 \mu \mathrm{~F}\right)$

Transition of Outputs
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=50 \Omega ; \mathrm{C}_{\mathrm{O} 1}=\mathrm{C}_{\mathrm{O} 2}=0.1 \mu \mathrm{~F}\right)$

Turn-Off Characteristic
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=50 \Omega ; \mathrm{C}_{\mathrm{O} 1}=\mathrm{C}_{\mathrm{O} 2}=0.1 \mu \mathrm{~F}\right)$

Time ($2 \mu \mathrm{~s} / \mathrm{div}$)

Turn-On Transient Characteristic $\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}\right.$; $\left.\mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=50 \Omega\right)$

Functional Block Diagram

Functional Description

The AAT4290 consists of five P-channel MOSFET power switches designed for I/O expansion applications. The AAT4291 has all of the features offered in the AAT4290, but integrates three switches instead of five. It operates with input voltages ranging from 1.8 V to 5.5 V which, along with its extremely low operating current, makes it ideal for battery-powered applications. In cases where the input voltage drops below 1.8 V , the AAT4290 MOSFETs are protected from entering the linear region of operation by automatically shutting down. In addition, the TTL-compatible EN/SET pin makes the AAT4290 an ideal level-shifted load switch. An optional slew rate controlling feature eliminates in-rush current when a MOSFET is turned on, allowing the AAT4290 to be implemented with a small input capacitor or no capacitor at all, while maintaining isolation between channels. During slewing, the current ramps linearly until it reaches the level required for the output load condition. The proprietary control method works by careful control and monitoring of the MOSFET gate voltage. When the device is switched ON, the gate voltage is quickly increased to the threshold level of the MOSFET. Once at this level, the current begins to slew as the gate voltage is slowly increased until the MOSFET becomes fully enhanced. Once it has reached this point, the gate is quickly increased to the full input voltage and $\mathrm{R}_{\mathrm{DS}(O N)}$ is minimized.

The ON/OFF state of the five MOSFET switches are controlled by the EN/SET serial data input. An internal control counter is clocked on the rising edge of the EN/SET pin and is decoded into the 32 possible states of the MOSFET (see Table 1). The counter rolls over after 32 clocks and the table repeats. The counter can be clocked at speeds up to 1 MHz , but the count value is not latched until clocking has stopped and the EN/SET pin has remained high for approximately $2.6 \mu \mathrm{~s}$. The first rising edge of EN/SET enables the AAT4290 and is counted as the first clock. To change states, additional low going clock pulses may be asserted on the EN/SET pin with the resulting change taking effect after the EN/SET pin has remained in a high state for $\mathrm{T}_{\text {Lat }}$. The AAT4290 is disabled after the EN/SET pin has transitioned and remained in a logic low state for T_{0}.

With the exception of three channel power switches, the AAT4291 has a similar function to the AAT4290. The ON/ OFF state of the three MOSFET switches are controlled by the EN/SET serial data input. An internal control counter is clocked on the rising edge of the EN/SET pin and is decoded into the eight possible states of the MOSFET (see Table 2). The counter rolls over after eight clocks and the table repeats.

Timing Diagram

Clock	OUT5	OUT4	OUT3	OUT2	OUT1
1	on	on	on	on	on
2	on	on	on	on	off
3	on	on	on	off	on
4	on	on	on	off	off
5	on	on	off	on	on
6	on	on	off	on	off
7	on	on	off	off	on
8	on	on	off	off	off
9	on	off	on	on	on
10	on	off	on	on	off
11	on	off	on	off	on
12	on	off	on	off	off
13	on	off	off	on	on
14	on	off	off	on	off
15	on	off	off	off	on
16	on	off	off	off	off
17	off	on	on	on	on
18	off	on	on	on	off
19	off	on	on	off	on
20	off	on	on	off	off
21	off	on	off	on	on
22	off	on	off	on	off
23	off	on	off	off	on
24	off	on	off	off	off
25	off	off	on	on	on
26	off	off	on	on	off
27	off	off	on	off	on
28	off	off	on	off	off
29	off	off	off	on	on
30	off	off	off	on	off
31	off	off	off	off	on
32	off	off	off	off	off

Table 1: AAT4290 Output Settings.

Clock	OUT3	OUT2	OUT1
1	on	on	on
2	on	on	off
3	on	off	on
4	on	off	off
5	off	on	on
6	off	on	off
7	off	off	on
8	off	off	off

Applications Information

Thermal Considerations

The AAT4290 is designed to deliver continuous output load currents. Due to its high level of integration, care must be taken in designing for higher load conditions. If greater loads are required, outputs can be tied together to deliver higher power to a given load.

At $25^{\circ} \mathrm{C}$ ambient, the AAT4290 is capable of dissipating 440 mW of power, or 1.14 A at 5.0 V , for an average current of 228 mA per output.

At $85^{\circ} \mathrm{C}$ ambient, the AAT4290 is capable of dissipating 178 mW of power, or 0.72 A at 5.0 V , for an average current of 145 mA per output.

Output Sequencing

If output sequencing is not necessary, then all of the outputs will be switched on simultaneously on the first rising edge of the EN/SET pin. However, if output sequencing is desired, then a series of pulses on the EN/ SET pin will accomplish this. Each time a new group of pulses is asserted on EN/SET, the AAT4290/91 internal control is reset. For example, to sequence the outputs in order from OUT5 to OUT1, five clocks bursts are input on the EN/SET pin. From Table 1, the first burst of 16 clocks turns on OUT5. A following burst of 8 clocks (as the counter resets) will add OUT4, followed by 4 clocks to add OUT3, 2 clocks to add OUT2, and 1 clock to add OUT1. Likewise, the outputs can be turned off in any order by adding more clock bursts.

Table 2: AAT4291 Output Settings.

Applications Circuits

Figure 1: GPIO I/ O Expander
(condense five GPIO control lines to one).

Figure 2: RGB LED Control
(eliminates three discrete MOSFET switches).

Ordering Information

Package	Marking 1	Part Number (Tape and Reel) ${ }^{2}$
SC70JW-8	HSXYY	AAT4290IJS-1-T1
SC70JW-8	HCXYY	AAT4291IJS-1-T1

All AnalogicTech products are offered in Pb-free packaging. The term "Pb-free" means semiconductor products that are in compliance with current RoHS standards, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at http://www.analogictech.com/about/quality.aspx.

Package Information

SC70J W-8

All dimensions in millimeters.

1. $\mathrm{XYY}=$ assembly and date code.
2. Sample stock is generally held on part numbers listed in BOLD.

Advanced Analogic Technologies, Inc.
© Advanced Analogic Technologies, Inc.

 brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.

[^0]: specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.
 2. Human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor to each pin
 3. Mounted on the board.
 4. Derate $4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

[^1]: relation with statistical process controls.

