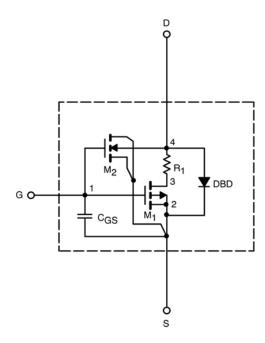


SPICE Device Model Si3495DV Vishay Siliconix

P-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

DataShee

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate DataSheet data sheet of the same number for guaranteed specification limits.

Document Number: 73150 www.vishay.com S-50836—Rev. B, 16-May-05 1

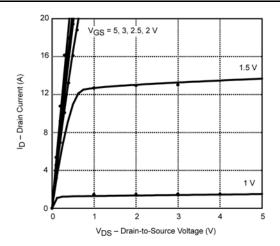
SPICE Device Model Si3495DV

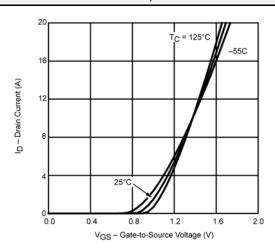
Vishay Siliconix

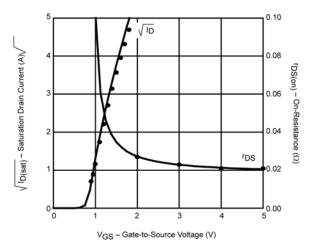
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.66		V
On-State Drain Current ^{ba}	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	144		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -7 \text{ A}$	0.021	0.020	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -6.2 \text{ A}$	0.025	0.024	
		$V_{GS} = -1.8 \text{ V}, I_D = -5.2 \text{ A}$	0.030	0.030	
		$V_{GS} = -1.5 \text{ V}, I_D = -3 \text{ A}$	0.035	0.036	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -5 \text{ V}, I_{D} = -7 \text{ A}$	25	25	S
Diode Forward Voltage ^a	V _{SD}	$I_{S} = -1.7 \text{ A}, V_{GS} = 0 \text{ V}$	-0.83	-0.62	V
Dynamic ^b	.		-	-	
Total Gate Charge	Q_g	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -7 \text{ A}$	22	25	nC
Gate-Source Charge	Q_{gs}		2.5	2.5	
Gate-Drain Charge	Q_{gd}		7	7	

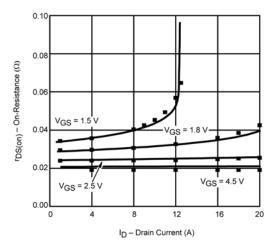
- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

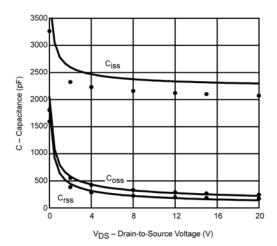
et4U.com

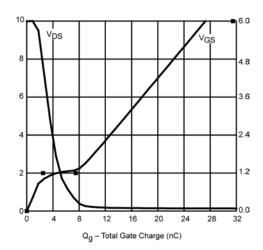

DataSheet4U.com


DataShee




SPICE Device Model Si3495DV Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



DataSheet4U.comi

et4U.com

Document Number: 73150 S-50836—Rev. B, 16-May-05