

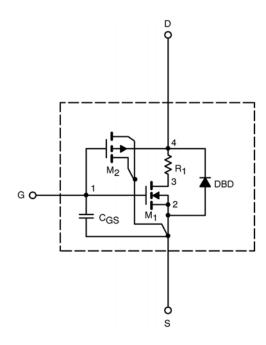
SPICE Device Model SUM110N04-2m7H

Vishay Siliconix

N-Channel 40-V (D-S) 175°C MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- · Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device

SUBCIRCUIT MODEL SCHEMATIC

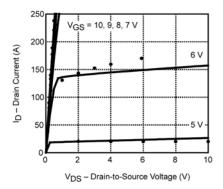
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

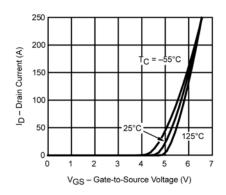
Document Number: 72933 www.vishay.com 09-Jun-04

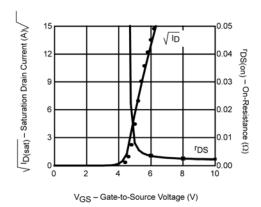
SPICE Device Model SUM110N04-2m7H

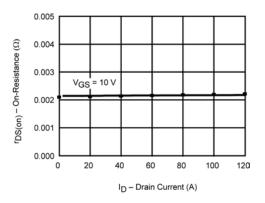
Vishay Siliconix

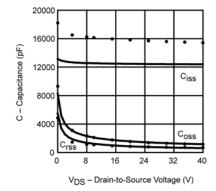
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μA	3.7		V
On-State Drain Current ^a	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	1170		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 30 A	0.0022	0.0022	Ω
		V_{GS} = 10 V, I_{D} = 30 A, T_{J} = 125°C	0.0031		
		V_{GS} = 10 V, I_{D} = 30 A, T_{J} = 175°C	0.0036		
Forward Transconductance ^a	gfs	$V_{DS} = 15 \text{ V}, I_{D} = 30 \text{ A}$	87		S
Forward Voltage ^a	V _{SD}	I_{S} = 85 A, V_{GS} = 0 V	1	1.1	V
Dynamic ^b					
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	12450	15720	Pf
Output Capacitance	C _{oss}		1429	1400	
Reverse Transfer Capacitance	C _{rss}		786	800	
Total Gate Charge ^c	Q_g	V_{DS} = 30 V, V_{GS} = 10 V, I_{D} = 110 A	262	250	NC
Gate-Source Charge ^c	Q_gs		95	95	
Gate-Drain Charge ^c	Q_{gd}		57	57	
Turn-On Delay Time ^c	$t_{d(on)}$	$V_{DD} = 30 \text{ V, } R_L = 0.27 \Omega$ $I_D \cong 110 \text{ A, } V_{GEN} = 10 \text{ V, } R_G = 2.5 \Omega$	43	50	Ns Ns
Rise Time ^c	t _r		101	150	
Turn-Off Delay Time ^c	$t_{\text{d(off)}}$		75	70	
Fall Time ^c	t _f		43	25	

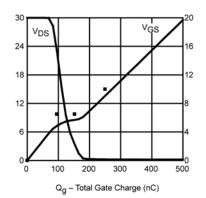

- a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature.


www.vishay.com Document Number: 72933 09-Jun-04




SPICE Device Model SUM110N04-2m7H Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 72933 www.vishay.com 09-Jun-04 3