FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- Pin compatible with the 74F257, 74FCT257, and 74FCT257T
- Zero propagation delay, zero ground bounce
- Undershoot clamp diodes on all switch and control inputs
- 25Ω resistors for low noise
- TTL-compatible control inputs
- Available in QSOP and S1 packages

DESCRIPTION:

The QS32257 is a high-speed CMOS LVTTL-compatible Quad $2: 1$
multiplexer/demultiplexer. The QS32257 is a function and pinoutcompatible
QuickSwitch version of the 74F257,74FCT257, and the 74ALS/AS/LS257
uad 2:1 multiplexers. The QS32257 has 25Ω series resistors to reduce
The QS32257 is a high-speed CMOS LVTTL-compatible Quad $2: 1$
multiplexer/demultiplexer. The QS32257 is a function and pinoutcompatible
QuickSwitch version of the 74F257, 74FCT257, and the 74ALS/AS/LS257
Quad 2:1 multiplexers. The QS32257 has 25Ω series resistors to reduce
The QS32257 is a high-speed CMOS LVTTL-compatible Quad $2: 1$
multiplexer/demultiplexer. The QS32257 is a function and pinoutcompatible
QuickSwitch version of the 74F257, 74FCT257, and the 74ALS/AS/LS257
Quad 2:1 multiplexers. The QS32257 has 25Ω series resistors to reduce
The QS32257 is a high-speed CMOS LVTTL-compatible Quad 2:1
multiplexer/demultiplexer. The QS32257 is afunction and pinoutcompatible
QuickSwitch version of the 74F257, 74FCT257, and the 74ALS/AS/LS257
Quad 2:1 multiplexers. The QS32257 has 25Ω series resistors to reduce ground noise.

Mux/Demux devices provide an order of magnitude faster speed than equivalent logic devices.

The QS32257 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

APPLICATIONS:

- Logic replacement (data processing)
- Video, audio, graphics switching, muxing
- Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- Bus funneling

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

QSOP/S1 TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIN	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
IOUT	DC Output Current	120	mA
Pmax	Maximum Power Dissipation $\left(\mathrm{TA}=85^{\circ} \mathrm{C}\right)$	0.5	W
TsTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc.

CAPACITANCE

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MH} z, \mathrm{~V}\right.$ In $=0 \mathrm{~V}$, Vout $\left.=0 \mathrm{~V}\right)$

Pins		Typ.	Max. ${ }^{(1)}$	Unit
Control Pins		4	5	pF
QuickswitchChannels (Switch OFF)	Demux	5	7	pF
	Mux	8	9	

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	I/O	Description
Ixx	I	Datalnputs
S	I	Select Input
\bar{E}	I	Enable Input
$\mathrm{YA}_{\mathrm{A}}-\mathrm{YD}$	0	DataOutputs

FUNCTION TABLE ${ }^{(1)}$

Enable		Outputs				Function
E	S	S1	So	YA	YB	
H	X	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Disconnected
L	L	IOA	IoB	loc	Iod	Select0
L	H	11 A	118	${ }_{11} \mathrm{C}$	IID	Select 1

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} C \mathrm{CC}=5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
In	Input LeakageCurrent (Control Inputs) ${ }^{2}$	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
Ioz	Off-State Output Current (Hi-Z)	OV \leq Vout \leq Vcc, Switches OFF	-	± 0.001	± 1	$\mu \mathrm{A}$
Ron ${ }^{(3)}$	Switch ON Resistance	$\mathrm{VcC}=\mathrm{Min}$., $\mathrm{VIN}=0 \mathrm{~V}$, Ion $=30 \mathrm{~mA}$	12	17	40	Ω
		$\mathrm{VCC}=$ Min., V IN $=2.4 \mathrm{~V}$, $\mathrm{IoN}=15 \mathrm{~mA}$	15	19	40	
Vp	Pass Voltage ${ }^{(2)}$	$\mathrm{VIN}=\mathrm{VCC}=5 \mathrm{~V}$, lout $=-5 \mu \mathrm{~A}$	3.7	4	4.2	V

NOTES:

1. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$.
2. Pass Voltage is guaranteed but not production tested.
3. Rout changed on March 8, 2002. See rear page for more information.

TYPICAL ON RESISTANCE vs Vin AT Vcc $=5 \mathrm{~V}$

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Max.	Unit
ICCQ	Quiescent Power Supply Current	VCC $=$ Max., VIN $=$ GND or Vcc, $f=0$	3	$\mu \mathrm{~A}$
$\Delta \mathrm{ICC}$	Power Supply Current per Control Input HIGH ${ }^{(2)}$	VCC $=$ Max., VIN $=3.4 \mathrm{~V}, \mathrm{f}=0$	1.5	mA
ICCD	Dynamic Power Supply Current per MHz ${ }^{(3)}$	VCC $=$ Max., I and Y pins open Control Inputs Toggling at 50% Duty Cycle	0.25	$\mathrm{~mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per TLL driven input ($\mathrm{V} \operatorname{IN}=3.4 \mathrm{~V}$, control inputs only). I and Y pins do not contribute to $\Delta \mathrm{lcc}$.
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The I and Y inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 5 \%$;
Cload $=50 p F$, Rload $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{(1)}$	Typ.	Max.	Unit
tPLL tPHL	Data PropagationDelay In to Y	-	-	$1.25^{(3)}$	ns
tPZH tPZL	Switch Turn-on Delay Sn to Y	0.5	-	6.2	ns
tPZH tPZL	Switch Turn-on Delay $\overline{\text { EN }}$ to Y	0.5	-	5.8	ns
tPHZ tPLZ	Switch Turn-off Delay (2) $\overline{\text { EN }}$ to Y, Sn to Y	0.5	-	5	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 1.25 ns for $\mathrm{CL}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

Quarter Size Outline Package

 Quarter Size Outline PackageAs per PCN L0201-02, the Output Resistance (Ron) specifications have changed as of March 8, 2002. The original specifications were:

Parameter	Description	Min.	Typ.	Max.	Unit
RoN	$\mathrm{VCC}=\mathrm{Min}, \mathrm{VIN}=0 \mathrm{~V}, \operatorname{ION}=30 \mathrm{~mA}$	20	28	40	Ω
	$\mathrm{VCC}=\mathrm{Min}, \mathrm{VIN}=2.4 \mathrm{~V}, \operatorname{ION}=15 \mathrm{~mA}$	20	35	48	

for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com
for Tech Support:
logichelp@idt.com
(408) 654-6459

