

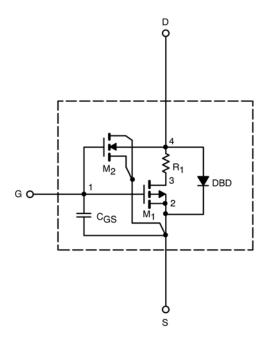
SPICE Device Model Si1419DH

Vishay Siliconix

P-Channel 200-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- · Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

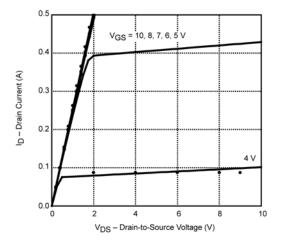
SUBCIRCUIT MODEL SCHEMATIC

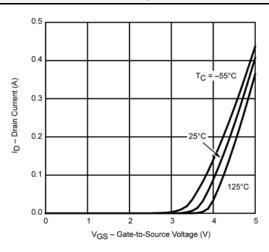
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

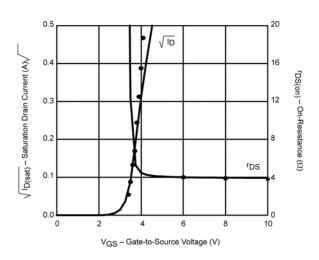
Document Number: 73330 www.vishay.com
S-50412—Rev. A, 14-Mar-05 www.DataSheet 4U.com

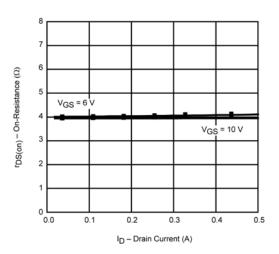
SPICE Device Model Si1419DH

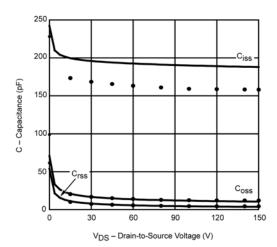
Vishay Siliconix

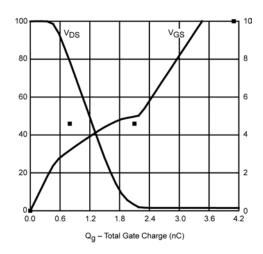

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	3.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	1.3		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -0.4 \text{ A}$	3.95	3.98	Ω
		$V_{GS} = -6 \text{ V}, I_D = -0.4 \text{ A}$	4.08	4.06	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -10 \text{ V}, I_{D} = -0.4 \text{ A}$	0.5	1	S
Diode Forward Voltage ^a	V _{SD}	I _S = -0.4 A, V _{GS} = 0 V	-0.72	-0.80	V
Dynamic ^b			-		
Total Gate Charge	Qg	$V_{DS} = -100 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -0.4 \text{ A}$	3.6	4.1	nC
Gate-Source Charge	Q_{gs}		0.8	0.8	
Gate-Drain Charge	Q_{gd}		1.3	1.3	


- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si1419DH Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data