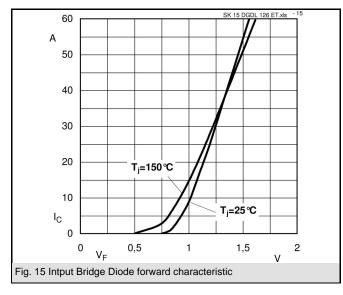


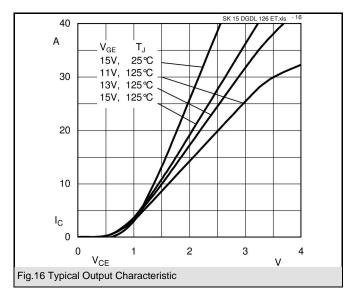
3-phase bridge rectifier + brake chopper +3-phase bridge inverter SK 15 DGDL 126 ET

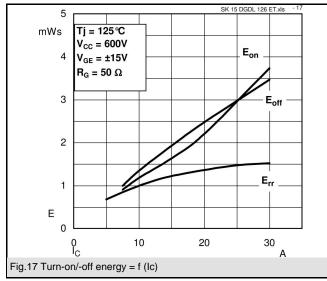
Preliminary Data

Features

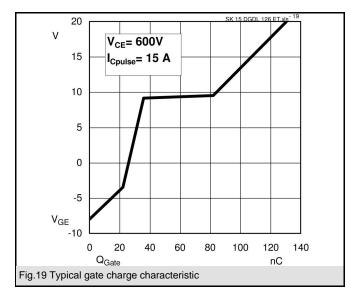
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench technology IGBT
- CAL High Density FWD
- Integrated NTC temperature sensor

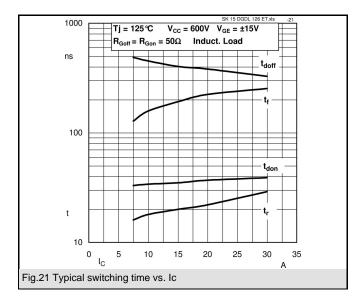

Typical Applications

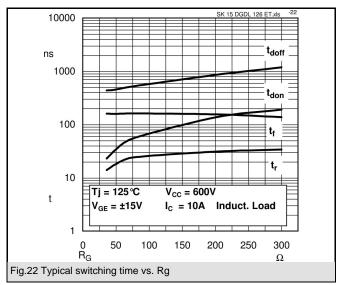

Inverter

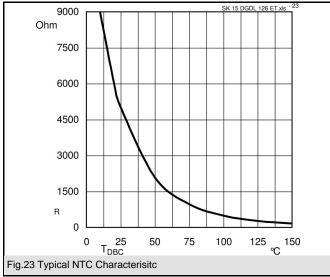

Absolute Maximum Ratings T _s = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		1200	V				
I _C	$T_s = 25 (80) ^{\circ}C$	22 (15)	Α				
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	30	Α				
V_{GES}		±20	V				
T _j		-40 + 150	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (80) °C	25 (17)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	30	Α				
T _j	·	-40 + 150	°C				
Rectifier							
V_{RRM}		1600	V				
I _F	T _s = 80 °C	21	Α				
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms}$, $\sin 180 ^{\circ}$, $T_i = 25 ^{\circ}\text{C}$	220	Α				
I ² t	t _p = 10 ms , sin 180 ° ,T _i = 25 °C	240	A²s				
T _j	,	-40 + 150	°C				
T _{sol}	Terminals, 10s	260	°C				
T _{stg}		-40 + 125	°C				
V _{isol}	AC, 1 min. / 1s	2500 / 3000	V				

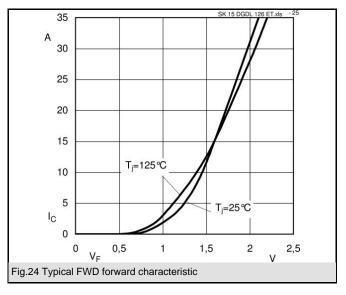
Characteristics		T _s = 25°C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT - Inverter, Chopper							
V _{CEsat}	I _C = 15 A, T _j = 25 (125) °C		1,7 (2)	2,1	V		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.6$ mA	5	5,8	6,5	V		
V _{CE(TO)}	T _j = 25 °C (125) °C		1 (0,9)		V		
r _T	$T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$		45 (70)		mΩ		
C _{ies}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		1,2		nF		
Coes	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,1		nF		
C _{res}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		9,1		nF		
R _{th(j-s)}	per IGBT			1,6	K/W		
t _{d(on)}	under following conditions		25		ns		
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		25		ns		
t _{d(off)}	$I_C = 15 \text{ A}, T_j = 125 ^{\circ}\text{C}$		385		ns		
t _f	$R_{Gon} = R_{Goff} = 30 \Omega$		90		ns		
Ė _{on}	inductive load		2		mJ		
E _{off}			1,8		mJ		
Diode - In	verter, Chopper						
$V_F = V_{EC}$	I _F = 15 A, T _i = 25(125) °C		1,6 (1,6)		V		
$V_{(TO)}$	T _j = 25 °C (125) °C		1 (0,8)		V		
r _T	T _j = 25 °C (125) °C		40 (53)		mΩ		
$R_{th(j-s)}$	per diode			2,1	K/W		
I _{RRM}	under following conditions		25		Α		
Q_{rr}	I _F = 15 A, V _R = 600 V		3		μC		
E _{rr}	V _{GE} = 0 V, T _j = 125 °C		1,1		mJ		
	di _{F/dt} = 900 A/μs						
Diode rec							
V_{F}	I _F = 15 A, T _j = 25() °C		1,1		V		
$V_{(TO)}$	$T_{j} = 150 ^{\circ}\text{C}$		0,9		V		
r _T	$T_{j} = 150 ^{\circ}\text{C}$		20		mΩ		
R _{th(j-s)}	per diode			2	K/W		
Temperatur sensor							
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω		
Mechanical data							
w			30		g		
M_s	Mounting torque			2,5	Nm		

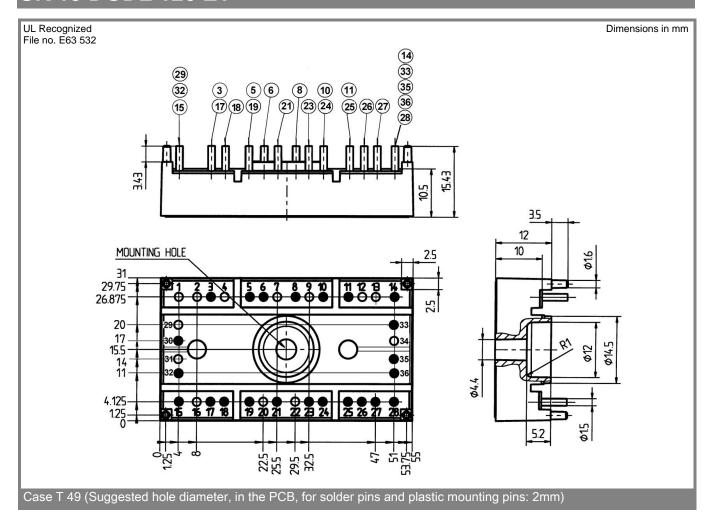

DGDL - ET

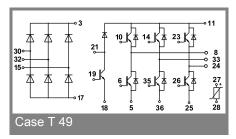












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.