TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE (π -MOSIII)

2 S K 3 3 0 1

HIGH SPEED, HIGH VOLTAGE SWITCHING APPLICATIONS SWITCHING REGULATOR, DC-DC CONVERTER APPLICATIONS

• Low Drain-Source ON Resistance : $R_{DS(ON)} = 15 \Omega$ (Typ.)

• High Forward Transfer Admittance : $|Y_{fS}| = 0.65 S$ (Typ.)

• Low Leakage Current : $I_{DSS} = 100 \,\mu\text{A}$ (Max.) ($V_{DS} = 720 \,\text{V}$)

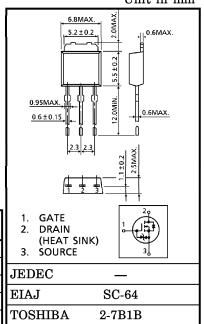
 $\bullet \quad \text{Enhancement-Mode} \quad : \, V_{\mbox{th}} = 2.4 \text{--} 3.4 \, V \\$

 $(V_{DS} = 10 \text{ V}, I_D = 1 \text{ mA})$

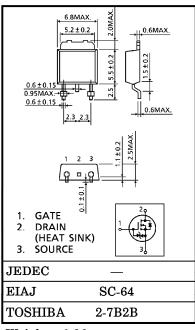
MAXIMUM RATINGS (Ta = 25°C)

CHARACTER	SYMBOL	RATING	UNIT	
Drain-Source Voltage	$v_{ m DSS}$	900	V	
Drain-Gate Voltage (R	${ m v_{DGR}}$	900	V	
Gate-Source Voltage	v_{GSS}	±30	V	
DCDrain Current	DC	I_{D}	1	A
	Pulse	I_{DP}	2	A
Drain Power Dissipation	$P_{\mathbf{D}}$	20	W	
Single Pulse Avalanch	$\mathbf{E}_{\mathbf{AS}}$	140	mJ	
Avalanche Current	$I_{ m AR}$	1	A	
Repetitive Avalanche I	EAR 2.0		mJ	
Channel Temperature	$\mathrm{T_{ch}}$	150	°C	
Storage Temperature R	$\mathrm{T_{stg}}$	-55~150	$^{\circ}\mathrm{C}$	

THERMAL CHARACTERISTICS


CHARACTERISTIC	SYMBOL	MAX.	UNIT
Thermal Resistance, Channel to Case	R _{th (ch-c)}	6.25	°C/W
Thermal Resistance, Channel to Ambient	R _{th (ch-a)}	125	°C/W

Note:


- * Repetitive rating; Pulse Width Limited by Max. junction temperature.
- ** V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 257 mH R_G = 25 Ω , I_{AR} = 1 A

This transistor is an electrostatic sensitive device. Please handle with caution.

INDUSTRIAL APPLICATIONS Unit in mm

Weight: 0.36g

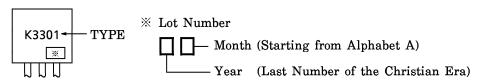
Weight: 0.36g

961001EAA2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
- TOSHIBA Semiconductor Reliability Handbook.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.


ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARAC	CTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	Current	I_{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μ A
Gate-Source I Voltage	Breakdown	V (BR) GSS	$I_{G} = \pm 10 \mu\text{A}, V_{DS} = 0 \text{V}$	±30	_	_	V
Drain Cut-off	Current	$I_{ m DSS}$	$V_{DS} = 720 \text{ V}, \ V_{GS} = 0 \text{ V}$	_	_	100	μ A
Drain-Source Voltage	Breakdown	V (BR) DSS	$I_D = 10 \mathrm{mA}, \; \mathrm{V}_{GS} = 0 \mathrm{V}$	900	_	_	V
Gate Thresho	ld Voltage	$ m V_{th}$	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$	2.4	_	3.4	V
Drain-Source	ON Resistance	R _{DS} (ON)	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 \text{ A}$	_	15	20	Ω
Forward Tran Admittance	ısfer	Y _{fs}	$V_{ m DS} = 10 \ m V, \ I_{ m D} = 0.5 \ m A$	0.3	0.65	_	S
Input Capacitance Reverse Transfer		$\mathrm{C_{iss}}$	C_{rss} $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz		165		pF
		Crac			6		
_	Capacitance			_	21		
Output Capac	eitance	Coss					
Switching Time Fall Time	Rise Time	t _r	$V_{GS} = 0.5 \text{ A} \\ V_{GS} = 0.5 \text{ A} \\ V_{OUT} = 0.5 \text{ A} \\ $	_	15	_	
	Turn-on Time	t _{on}		_	60	_	
	Fall Time	tf		_	40	_	ns
	Turn-off Time	t _{off}			110		
Total Gate Charge (Gate- Source Plus Gate-Drain)		$\mathbf{Q}_{\mathbf{g}}$	$V_{DD} = 400 \text{ V}, V_{GS} = 10 \text{ V},$	_	6	_	
Gate-Source Charge		Q_{gs}	$I_D = 1A$	_	3	_	nC
Gate-Drain ("Miller") Charge		Q_{gd}		_	3	_	

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Continuous Drain Reverse Current	$I_{ m DR}$	_	_	_	1	A
Pulse Drain Reverse Current	${ m I}_{ m DRP}$	_	_	_	2	A
Diode Forward Voltage	${ m v_{DSF}}$	$I_{\mathrm{DR}} = 1 \mathrm{A}, \ \mathrm{V}_{\mathrm{GS}} = 0 \mathrm{V}$	_	_	-1.7	V
Reverse Recovery Time	t_{rr}	$I_{DR} = 1 \text{ A}, V_{GS} = 0 \text{ V}$	_	1300	_	ns
Reverse Recovery Charge	$Q_{\mathbf{rr}}$	$\mathrm{dI}_{\mathrm{DR}}$ / $\mathrm{dt}=100\mathrm{A}$ / $\mu\mathrm{s}$	_	1.95	_	μ C

MARKING

