2SK3035 (Tentative)
 Silicon N-Channel Power F-MOS FET

- Features

- Avalanche energy capacity guaranteed
- High-speed switching
- Low ON-resistance
- No secondary breakdown
- Low-voltage drive
- High electrostatic breakdown voltage

- Applications

- Contactless relay
- Diving circuit for a solenoid
- Driving circuit for a motor
- Control equipment
- Switching power supply

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Ratings	Unit
Drain to Source breakdown voltage		$\mathrm{V}_{\text {DSS }}$	150	V
Gate to Source voltage		$\mathrm{V}_{\text {GSS }}$	± 20	V
Drain current	DC	I_{D}	± 3	A
	Pulse	I_{DP}	± 6	A
Avalanche energy capacity		EAS*	0.45	mJ
Allowable power dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	10	W
	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		1	
Channel temperature		$\mathrm{T}_{\text {ch }}$	150	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

* $\mathrm{L}=0.1 \mathrm{mH}, \mathrm{I}_{\mathrm{L}}=3 \mathrm{~A}, 1$ pulse

Internal Connection

Electrical C haracteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	min	typ	max	Unit
Drain to Source cut-off current	$\mathrm{I}_{\text {DSS }}$	$\mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			10	$\mu \mathrm{A}$
Gate to Source leakage current	$\mathrm{I}_{\mathrm{GSS}}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			± 10	$\mu \mathrm{A}$
Drain to Source breakdown voltage	$\mathrm{V}_{\text {DSS }}$	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	150			V
Gate threshold voltage	$\mathrm{V}_{\text {th }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	1		2.5	V
Drain to Source ON-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on)1 }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$		0.52	1.1	$\mathrm{m} \Omega$
	$\mathrm{R}_{\mathrm{DS} \text { (on)2 }}$	$\mathrm{V}_{\mathrm{GS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$		0.6	1.3	$\mathrm{m} \Omega$
Forward transfer admittance	$\left\|\mathrm{Y}_{\mathrm{fs}}\right\|$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$	1.5	2.7		S
Diode forward voltage	$\mathrm{V}_{\text {DSF }}$	$\mathrm{I}_{\mathrm{DR}}=3 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			-1.4	V
Input capacitance (Common Source)	$\mathrm{C}_{\mathrm{iss}}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$		190		pF
Output capacitance (Common Source)	$\mathrm{C}_{\mathrm{oss}}$			45		pF
Reverse transfer capacitance (Common Source)	$\mathrm{C}_{\mathrm{rss}}$			25		pF
Turn-on time (delay time)	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		13		ns
Rise time	t_{r}			25		ns
Fall time	t_{f}			135		ns
Turn-off time (delay time)	$\mathrm{t}_{\mathrm{d}(\mathrm{off})}$			540		ns
Thermal resistance between channel and case	$\mathrm{R}_{\mathrm{th}(\mathrm{ch-c})}$				12.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance between channel and atmosphere	$\mathrm{R}_{\mathrm{th}(\mathrm{ch-a)}}$				125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

