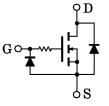
TOSHIBA

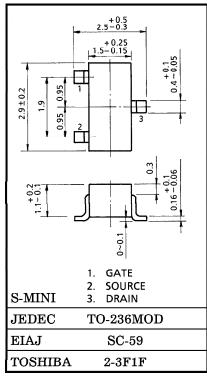
TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE

2 S K 2 8 2 3

FOR PORTABLE EQUIPMENT


HIGH SPEED SWITCH APPLICATIONS

ANALOG SWITCH APPLICATIONS


- High Input Impedance
- 1.5V Gate Drive
- Low Gate Threshold Voltage : Vth=0.5~1.0V
- Small Package

EQUIVALENT CIRCUIT

MARKING

KΚ

Weight : 0.012g (Typ.)

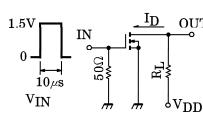
This transistor is electrostatic sensitive device. Please handle with caution.

MAXIMUM RATINGS (Ta = 25°C)

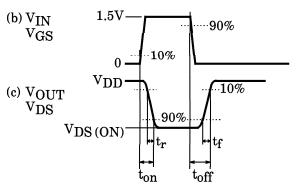
CHARACTERISTIC	SYMBOL	RATING	UNIT	
Drain-Source Voltage	V _{DS}	20	v	
Gate-Source Voltage	VGSS	10	v	
DC Drain Current	ID	100	mA	
Drain Power Dissipation	PD	200	mW	
Channel Temperature	T _{ch}	150	°C	
Storage Temperature Range	T _{stg}	$-55 \sim 150$	°C	

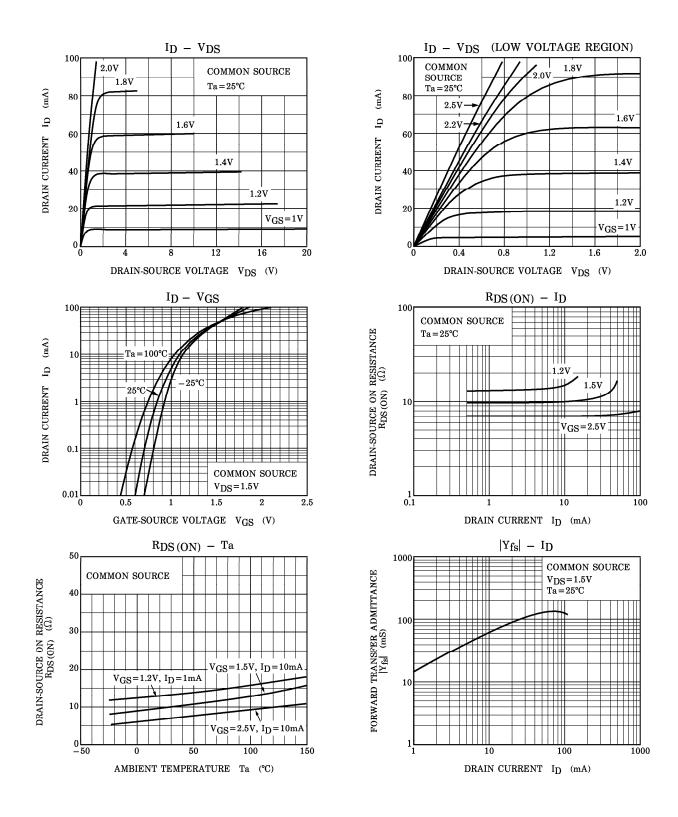
961001EAA2

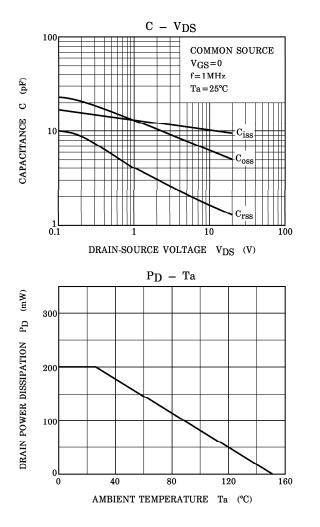
- 91001EAA.
 TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

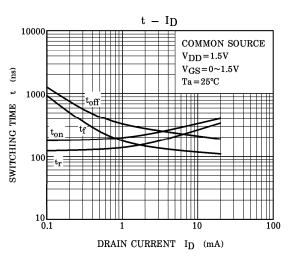

Unit in mm

		(
CHARAC	CTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	Current	IGSS	$V_{GS} = 10V, V_{DS} = 0$	_		1	μA
Drain-Source I Voltage	Breakdown	V (BR) DSS	$I_{D} = 100 \mu A, V_{GS} = 0$	20	_	_	v
Drain Cut-off	Current	IDSS	$V_{DS}=20V, V_{GS}=0$	_	_	1	$\mu \mathbf{A}$
Gate Threshol	d Voltage	v_{th}	$V_{DS} = 1.5V, I_D = 0.1mA$	0.5		1.0	V
Forward Tran	sfer Admittance	Y _{fs}	$V_{DS} = 1.5V, I_D = 10mA$	35	70		mS
Drain-Source ON Resistance $1 R_{DS(ON)1}$		$I_D=1mA$, $V_{GS}=1.2V$	_	15	50	Ω	
Drain-Source	ON Resistance 2	$R_{DS}(ON) 2$	$I_D = 10 \text{mA}, V_{GS} = 1.5 \text{V}$	_	10	40	Ω
Drain-Source	ON Resistance 3	R _{DS} (ON) 3	$I_D = 10 \text{mA}, V_{GS} = 2.5 \text{V}$	_	7	28	Ω
Input Capacita	ance	Ciss	$V_{DS} = 1.5V, V_{GS} = 0, f = 1MHz$	_	12		pF
Reverse Transfer Capacitance C _{rss}		$V_{DS} = 1.5V, V_{GS} = 0, f = 1MHz$	_	3.4	_	pF	
Output Capaci	itance	Coss	$V_{DS} = 1.5V, V_{GS} = 0, f = 1MHz$		12		pF
Switching	Turn-on Time	t _{on}	V _{DD} =1.5V, I _D =10mA,		0.35		
Time	Turn-off Time	toff	$V_{GS} = 0 \sim 1.5 V$	_	0.2	_	μs


ELECTRICAL CHARACTERISTICS (Ta = 25°C)


SWITCHING TIME TEST CIRCUIT





 $\begin{array}{c} \underset{\scriptstyle 0 \text{UT}}{\overset{\scriptstyle 0 \text{UT}}{\longrightarrow}} & \underset{\scriptstyle 0 \text{UL}}{\overset{\scriptstyle 0 \text{UD}}{\longrightarrow}} = 1.5 \text{V} \\ & \underset{\scriptstyle 0 \text{UL}}{\overset{\scriptstyle 0 \text{UL}}{\longrightarrow}} = 1.5 \text{V} \\ & \underset{\scriptstyle 0 \text{UL}}{\overset{\scriptstyle 0 \text{UI}}{\longrightarrow}} = 1.5 \text{V} \\ & \underset{\scriptstyle 0 \text{VIN}}{\overset{\scriptstyle 0 \text{VIN}}{\longrightarrow}} : t_{r}, t_{f} < 5 \text{ns} \\ & \underset{\scriptstyle (\text{Z}_{out} = 50 \Omega)}{\overset{\scriptstyle 0 \text{COMMON SOURCE}}{\longrightarrow}} \\ & \underset{\scriptstyle \text{Ta} = 25^{\circ} \text{C}}{\overset{\scriptstyle 0 \text{C}}{\longrightarrow}} \end{array}$

