TOSHIBA 2SK2776

TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE (π -MOS V)

2 S K 2 7 7 6

HIGH SPEED, HIGH CURRENT SWITCHING APPLICATIONS CHOPPER REGULATOR, DC-DC CONVERTER AND MOTOR DRIVE **APPLICATIONS**

Low Drain-Source ON Resistance : $R_{DS(ON)} = 0.75\Omega$ (Typ.)

High Forward Transfer Admittance : $|Y_{fs}| = 7.0S$ (Typ.)

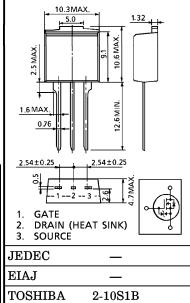
Low Leakage Current : I_{DSS}=100μA (Max.) (V_{DS}=500V)

Enhancement-Mode : $V_{th} = 2.0 \sim 4.0 \text{V} \text{ (V}_{DS} = 10 \text{V}, I_D = 1 \text{mA)}$

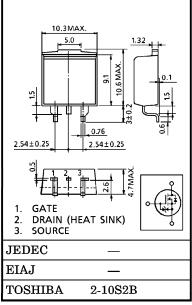
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERIST	SYMBOL RATING		UNIT	
Drain-Source Voltage	$v_{ m DSS}$	500	V	
Drain-Gate Voltage (RGS	$v_{ m DGR}$	500	V	
Gate-Source Voltage	v_{GSS}	±30	V	
Drain Current	DC	$I_{\mathbf{D}}$	8	Α
	Pulse	I_{DP}	32	Α
Drain Power Dissipation	$P_{\mathbf{D}}$	65	W	
Single Pulse Avalanche	EAS	312	mJ	
Avalanche Current	I_{AR}	8	Α	
Repetitive Avalanche En	E_{AR}	E _{AR} 6.5		
Channel Temperature	$\mathrm{T_{ch}}$	150	°C	
Storage Temperature Rai	$\mathrm{T_{stg}}$	-55~150	°C	

THERMAL CHARACTERISTICS


	SYMBOL		
Thermal Resistance, Channel to Case	R _{th (ch-c)}	1.92	°C/W
Thermal Resistance, Channel to Ambient	R _{th (ch-a)}	83.3	°C/W

Note:


- Repetitive rating; Pulse Width Limited by Max. junction temperature.
- ** V_{DD} =90V, Starting T_{ch} =25°C, L=8.3mH $R_G = 25\Omega$, $I_{AR} = 8A$

This transistor is an electrostatic sensitive device. Please handle with caution.

INDUSTRIAL APPLICATIONS Unit in mm TO-220FL

TO-220SM Unit in mm

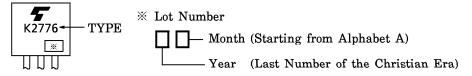
Weight: 1.5g

961001EAA2

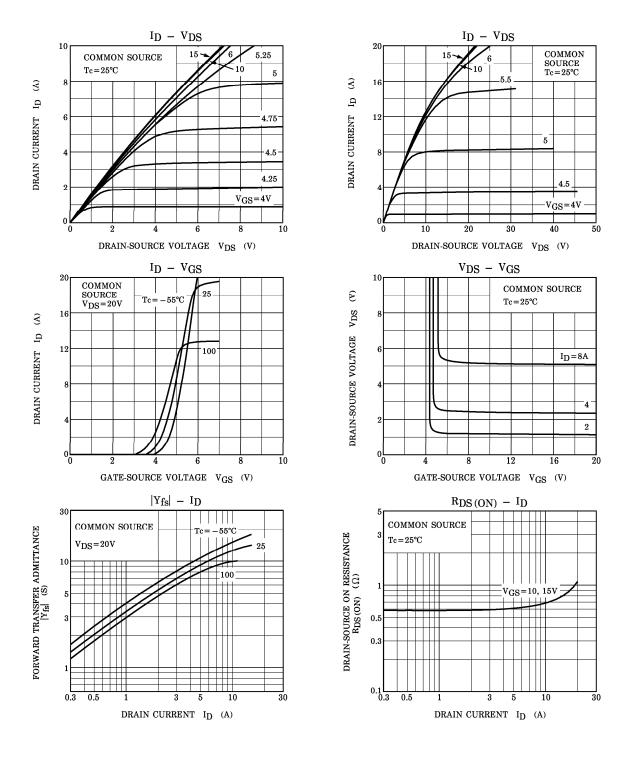
- 961001EAA
 TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

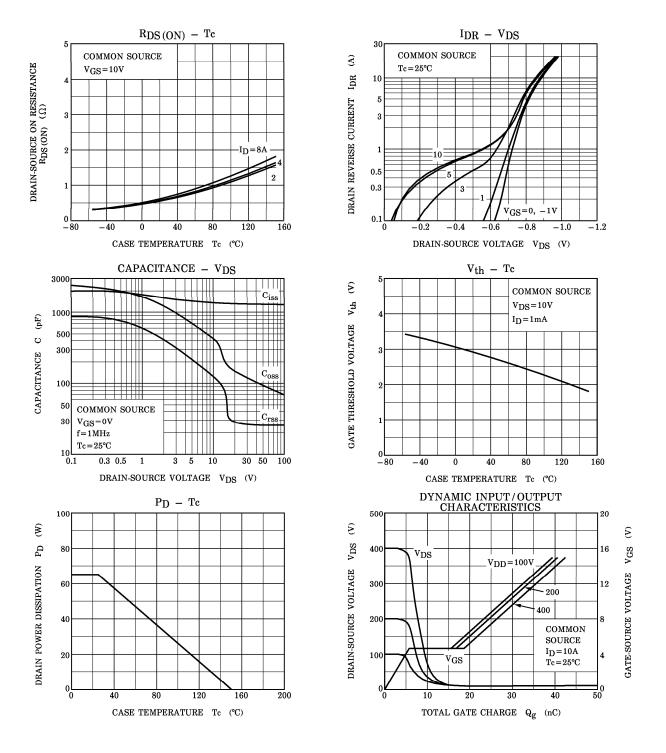
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

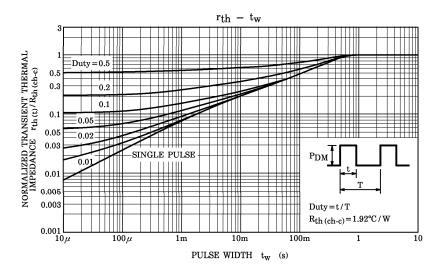
 The information contained herein is subject to change without notice.

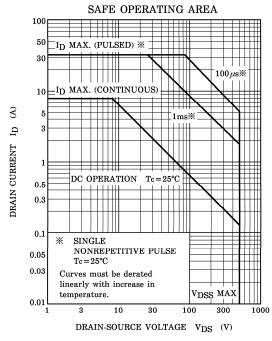

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

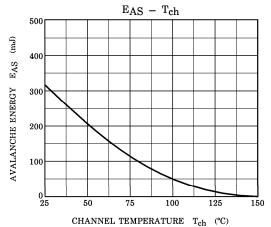
CHARAC	TERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	Current	IGSS	$V_{GS} = \pm 25V, V_{DS} = 0V$	_	_	±10	μ A
Gate-Source B Voltage	reakdown	V (BR) GSS	$I_{G} = \pm 10 \mu A, V_{DS} = 0 V$	±30	_	_	V
Drain Cut-off	Current	$I_{ m DSS}$	V_{DS} =500V, V_{GS} =0V	_	_	100	μ A
Drain-Source Voltage	Breakdown	V (BR) DSS	$I_{D} = 10 \text{mA}, V_{GS} = 0 \text{V}$	500	_	_	V
Gate Threshol	d Voltage	V_{th}	$V_{DS}=10V, I_D=1mA$	2.0	_	4.0	V
Drain-Source	ON Resistance	R _{DS} (ON)	$V_{GS}=10V, I_D=4A$		0.75	0.85	Ω
Forward Tran Admittance	sfer	Y _{fs}	V_{DS} =10V, I_{D} =4A	3.5	7.0	_	S
Input Capacitance Reverse Transfer Capacitance		Ciss	$V_{ m DS} = 10 { m V}, \ V_{ m GS} = 0 { m V}, \ { m f} = 1 { m MHz}$	_	1300	_	
		C_{rss}		_	130	_	pF
Output Capac	Output Capacitance			_	400	_	
Switching Time Fall Time	Rise Time	${ m c_{oss}}$ ${ m t_r}$	VGS OV ID=4A Vout	ı	26	_	
	Turn-on Time	t _{on}	$R_{L}=$ $R_{L}=$ S_{0} $R_{L}=$ S_{0} S	-	45	_	ns
	Fall Time	t _f		_	40	_	115
	Turn-off Time	$t_{ m off}$	$V_{ ext{IN}}: t_{ ext{r}}, t_{ ext{f}}{<}5 ext{ns}, \ ext{Duty} \leq 1\%, t_{ ext{W}}{=}10\mu ext{s}$	1	140	_	
Total Gate Charge (Gate- Source Plus Gate-Drain)		$\mathbf{Q}_{\mathbf{g}}$	VI - 100VI VI 10VI - 01		30		
Gate-Source Charge		$\mathbf{Q}_{\mathbf{g}\mathbf{s}}$	$V_{DD} = 400V, V_{GS} = 10V, I_D = 8A$		17	_	nC
Gate-Drain ("Miller") Charge		$Q_{ m gd}$		_	13	_	

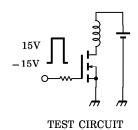

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25°C)

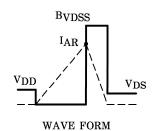

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Continuous Drain Reverse Current	$I_{ m DR}$	_	_	_	8	A
Pulse Drain Reverse Current	$I_{ m DRP}$	_	_	_	32	Α
Diode Forward Voltage	$v_{ m DSF}$	$I_{DR}=8A, V_{GS}=0V$	1	_	-1.7	V
Reverse Recovery Time	$\mathfrak{t}_{\mathbf{rr}}$	$I_{DR}=8A, V_{GS}=0V$	_	1200	_	ns
Reverse Recovery Charge	Q_{rr}	$dI_{DR}/dt = 100A/\mu s$	_	10	_	μC


MARKING




1998-11-12 2/5





Peak IAR=8A, RG=25
$$\Omega$$

VDD=90V, L=8.3mH

$$E_{AS} = \frac{1}{2} \cdot L \cdot I^2 \cdot (\frac{B_{VDSS}}{B_{VDSS} - V_{DD}})$$