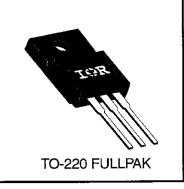

International **IKPR** Rectifier

HEXFET[®] Power MOSFET

- Isolated Package
- High Voltage Isolation= 2.5KVRMS (5)
- Sink to Lead Creepage Dist.= 4.8mm
- 175°C Operating Temperature
- Dynamic dv/dt Rating
- Low Thermal Resistance

PD-9.873


IRFIZ48G

 $V_{DSS} = 60V$ $R_{DS(on)} = 0.018\Omega$ $I_{\rm D} = 37A$

Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 Fullpak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Fullpak is mounted to a heatsink using a single clip or by a single screw fixing.

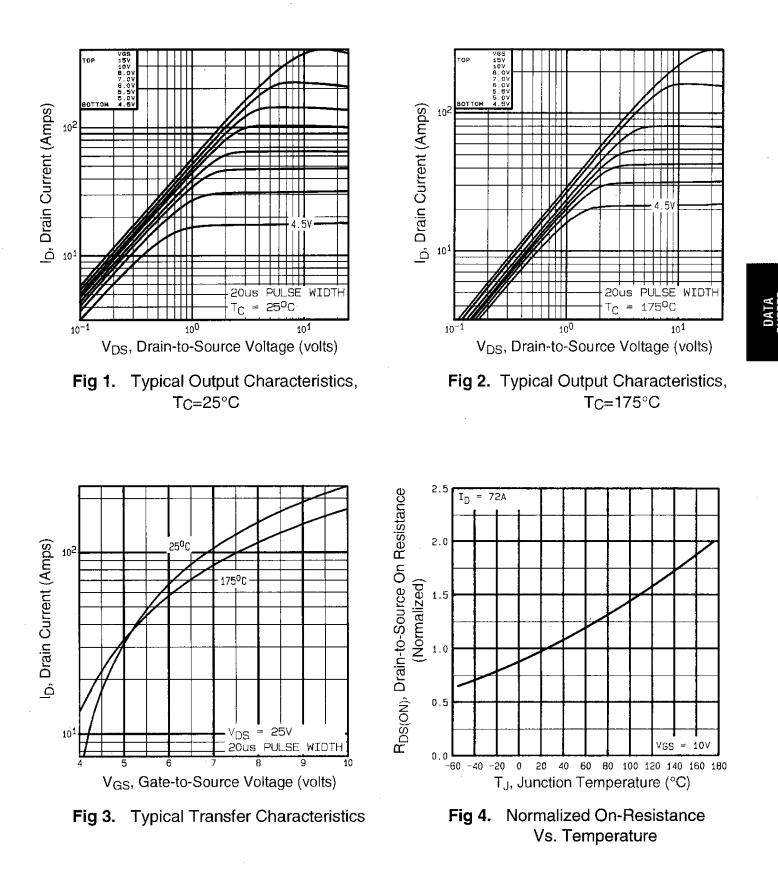
Absolute Maximum Ratings

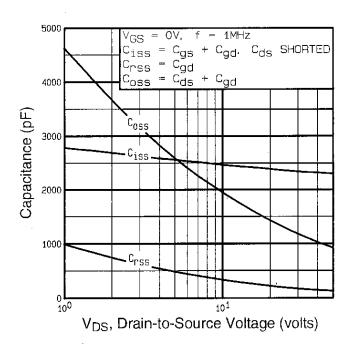
	Parameter	Max.	Units	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, VGS @ 10 V	us Drain Current, V _{GS} @ 10 V 37		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10 V	26	A	
IDM	Pulsed Drain Current ①	150		
P _D @ T _C = 25°C	Power Dissipation	50	W	
	Linear Derating Factor	0.40	W/°C	
V _{GS}	Gate-to-Source Voltage	±20	V	
EAS	Single Pulse Avalanche Energy 2	100	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	4.5	V/ns	
TJ T _{STG}	Operating Junction and Storage Temperature Range	-55 to +175	°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
· · · · · · · · · · · · · · · · · · ·	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1 N•m)		

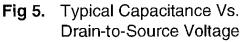
Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Rejc	Junction-to-Case		—	3.0	∘c/w
Reja	Junction-to-Ambient	-		65	0,11

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Тур.	Max.	Units	Test Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	60	—		٧	V _{GS} =0V, I _D = 250μA
ΔV(BR)DSS/ΔTJ	Breakdown Voltage Temp. Coefficient	_	0.060	_	V/∘C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	—	0.018	Ω	V _{GS} =10V, I _D =22A ④
V _{GS(th)}	Gate Threshold Voltage	2.0	—	4.0	V	V _{DS} =V _{GS} , I _D = 250μA
g ts	Forward Transconductance	17			S	V _{DS} =25V, I _D =22A ④
	Drain to Course Lookage Current		—	25	μA	V _{DS} =60V, V _{GS} =0V
IDSS	Drain-to-Source Leakage Current			250		V _{DS} =48V, V _{GS} =0V, T _J =150°C
lass	Gate-to-Source Forward Leakage			100	nA	V _{GS} =20V
lgss	Gate-to-Source Reverse Leakage			-100		V _{GS} =-20V
Qg	Total Gate Charge] —	110		I _D =72A
Q _{gs}	Gate-to-Source Charge		-	29	nC	V _{DS} =48V
Q _{gd}	Gate-to-Drain ("Miller") Charge	—	—	36		V _{GS} =10V See Fig. 6 and 13 ④
t _{d(on)}	Turn-On Delay Time	—	8.1	_		V _{DD} =30V
tr	Rise Time		250		ns	I _D =72A
t _{d(off)}	Turn-Off Delay Time		210		115	R _G =9.1Ω
t _f	Fall Time	_	250			$R_D=0.34\Omega$ See Figure 10 ④
LD	Internal Drain Inductance	—	4.5		nH	Between lead, 6 mm (0.25in.)
Ls	Internal Source Inductance		7.5		111 1	from package and center of die contact
Ciss	Input Capacitance		2400	_		V _{GS} =0V
Coss	Output Capacitance		1300		pF	V _{DS} = 25V
Crss	Reverse Transfer Capacitance		190			f=1.0MHz See Figure 5
С	Drain to Sink Capacitance	_	12		рF	f=1.0MHz


Source-Drain Ratings and Characteristics


	Parameter	Min.	Тур.	Max.	Units	Test Conditions
ls	Continuous Source Current (Body Diode)	—	_	37	Α	MOSFET symbol showing the
Ism	Pulsed Source Current (Body Diode) ①	—	_	150		integral reverse GUTS
V _{SD}	Diode Forward Voltage	_		2.0	V	T _J =25°C, I _S =37A, V _{GS} =0V ④
t _{rr}	Reverse Recovery Time	_	120	180	ns	TJ=25°C, IF=72A
Q _{rr}	Reverse Recovery Charge	_	0.50	0.80	μC	di/dt=100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is neglegible (turn-on is dominated by $L_{S}+L_{D}$)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature (See Figure 11)
- ③ I_{SD}≤72A, di/dt≤200A/μs, V_{DD}≤V(BR)DSS, T_J≤175°C
- ④ Pulse width \leq 300 $\mu s;$ duty cycle $\leq\!\!2\%.$

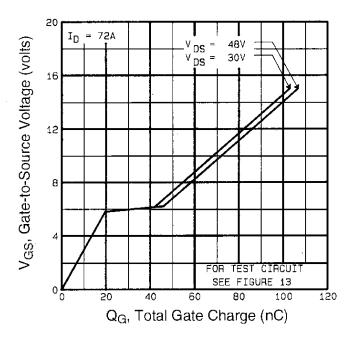


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

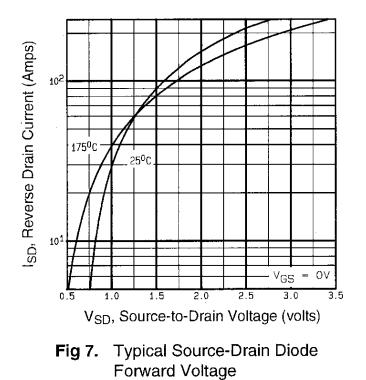
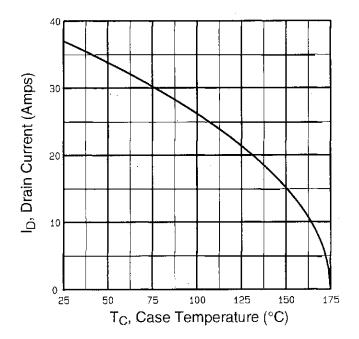
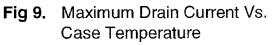




Fig 8. Maximum Safe Operating Area

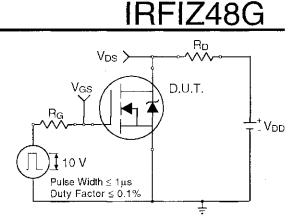


Fig 10a. Switching Time Test Circuit

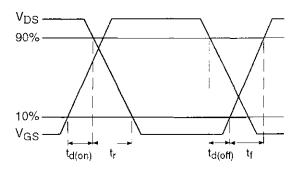


Fig 10b. Switching Time Waveforms

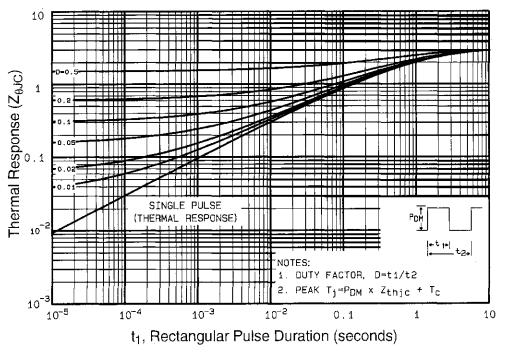


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFIZ48G

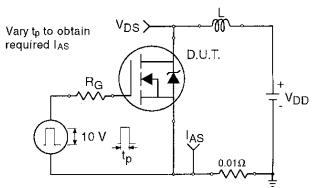


Fig 12a. Unclamped Inductive Test Circuit

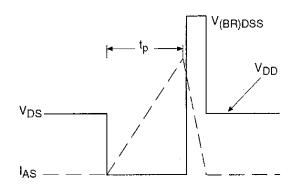


Fig 12b. Unclamped Inductive Waveforms

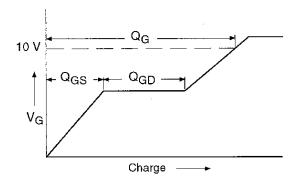
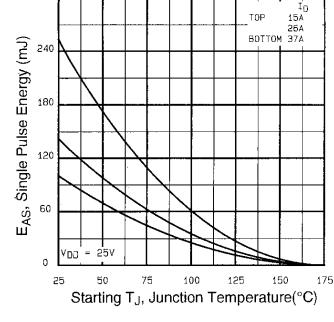



Fig 13a. Basic Gate Charge Waveform

Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit – See page 1505
Appendix B: Package Outline Mechanical Drawing – See page 1510
Appendix C: Part Marking Information – See page 1517

International

300

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

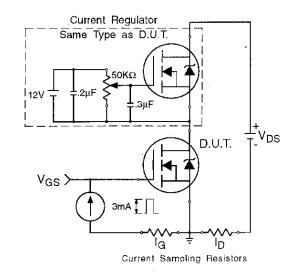


Fig 13b. Gate Charge Test Circuit

I (?R