INTERNATIONAL RECTIFIER

Data Sheet No. PD-9.3151

T-39-11

INTERNATIONAL RECTIFIER

REPETITIVE AVALANCHE AND dv/dt RATED*

HEXFET® TRANSISTORS

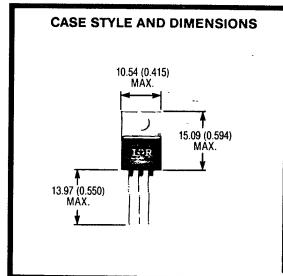
N-CHANNEL

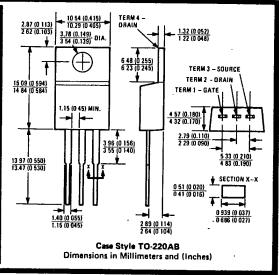
IRF720 **IRF721 IRF722 IRF723**

400 Volt, 1.8 Ohm HEXFET **TO-220AB Plastic Package**

The HEXFET® technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dv/dt capability.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.


They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.


Product Summary

Part Number	BVDSS	R _{DS(on)}	ΙD	
IRF720	400V	1.8Ω	3.3A	
IRF721	350V	1.8Ω	3.3A	
IRF722	400V	2.5Ω	2.8A	
IRF723 °	350V	2.5Ω	2.8A	

FEATURES:

- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling

This data sheet applies to product with batch codes that begin with a digit, ie. 2A3B

lle D 🖥 4855452 0008529

INTERNATIONAL RECTIFIER

Absolute Maximum Ratings

T-39-11

	Parameter	IRF720, IRF721	IRF722, IRF723	Units
I _D @ T _C = 25°C	Continuous Drain Current	3.3	2.8	A
ID @ TC = 100°C	Continuous Drain Current	2.1	. 1.8	- A
DM	Pulsed Drain Current ①	13	11	A
P _D @ T _C = 25°C	Max. Power Dissipation		50 -	` w
	Linear Derating Factor	(0.40	W/K ®
V _{GS}	Gate-to-Source Voltage		v	
EAS	Single Pulse Avalanche Energy @	(See	Lm	
I AR	Avalanche Current ① (Repetitive or Non-Repetitive)	(Se	A	
EAR	Repetitive Avalanche Energy ①	(Se	mJ	
dv/dt	- Peak Diode Recovery dv/dt ③	4,0 (See Fig. 17)		V/ns
TJ TSTG	Operating Junction Storage Temperature Range	-58	5 to 150	°C
	Lead Temperature	300 (0.063 in. (1.6n	nm) from case for 10s)	°C

Electrical Characteristics @ T_J = 25°C (Unless Otherwise Specified)

	Parameter	Type	Min.	Тур.	Max.	Units	Test Co	nditions	
BVDSS	BVDSS Drain-to-Source Breakdown Voltage		400	-	_	v	$V_{GS} = 0V$, $I_D = 250 \mu A$		
			350	ю 0			·		
RDS(on)	Static Drain-to-Source On-State Resistance	IRF720 IRF721		1.6	1,8	Ω	V _{GS} = 10V, I _D = 1.8A		
		IRF722 IRF723	-	1,8	2.5			·	
I _{D(on)}	On-State Drain Current @	IRF720 IRF721	3.3		_	A	VDS > ID(on) X RDS(on) Ma	x	
		IRF722 IRF723	2.8				V _{GS} = 10V		
V _{GS(th)}	Gate Threshold Voltage	ALL	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	•	
9fs	Forward Transconductance	ALL	1.8	2.7	_	S (U)	$I_{DS} = 1.8A, V_{DS} \ge 50V$		
IDSS	Zero Gate Voltage Drain Current	ALL	_	-	250	μА	V _{DS} = Max. Rating, V _{GS} = 0V		
	•		-	-	1000		V _{DS} = 0.8 x Max. Rating V _{GS} = 0V, T _J = 125°C		
IGSS	Gate-to-Source Leakage Forward	ALL	_	-	500	nA	V _{GS} = 20V		
IGSS	Gate-to-Source Leakage Reverse	ALL	_	—	-500	nA	V _{GS} = -20V		
a _g	Total Gate Charge	ALL	_	13	20	nC	V _{GS} = 10V, I _D = 3.3A V _{DS} = 0.8 x Max. Rating		
Ogs	Gate-to-Source Charge	ALL		2.2	3.3	nC	See Fig. 16		
Q_{gd}	Gate-to-Drain ("Miller") Charge		-	7.2	11	nC	(Independent of operating te		
td(on)	Turn-On Delay Time	ALL		10	15	ns	$V_{DD} = 200V$, $I_{D} \approx 3.3A$, R	$G = 18\Omega$	
tr	Rise Time	ALL	_	14	21	ns	$R_D = 56\Omega$		
^t d(off)	Turn-Off Delay Time	ALL		30	45	ns	See Fig. 15		
tf	Fall Time	ALL		13	20	ns	(Independent of operating to		
LD	Internal Drain Inductance	ALL	-	4.5	-	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.	Modified MOSFET symbol showing the internal inductances.	
LS	Internal Source Inductance	ALL	_	7.5	-	nH	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.		
Ciss	Input Capacitance	ALL	 -	350	-	рF	$V_{GS} = 0V$, $V_{DS} = 25V$		
Coss	Output Capacitance	ALL	T-	64		ρF	f = 1.0 MHz		
Crss	Reverse Transfer Capacitance	ALL	T-	8.1	Τ-	pF	See Fig. 10		

INTERNATIONAL RECTIFIER

T-39-11

Source-Drain Diode Ratings and Characteristics

	Parameter Typ		Min.	Тур.	Max.	Units	Test Conditions			
Is Continuous Source Current (Body Diode)		ALL	_	- -	3.3	A	Modified MOSFET symbol showing the integral Reverse p-n junction rectifier.			
^I SM	Pulsed Source Current (Body Diade) ①	ALL	=	-	13	Α				
V _{SD}	Diode Forward Voltage	ALL			1.6	V	T _J = 25°C, I _S = 3.3A, V _{GS} = 0V			
t _{rr}	Reverse Recovery Time	ALL	120	270	600	ns	$T_J = 25^{\circ}\text{C}$, $I_F = 3.3\text{A}$, dikt = 100 A/ μ s			
ORR	Reverse Recovery Charge	ALL	0.64	1.4	3.0	μC	-			
t _{on}	Forward Turn-On Time	ALL	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lp.							

Thermal Resistance

R _{th} JC Jun	nction-to-Case	ALL	_	-	2.5	K/W ®	
R _{thCS} Cas	se-to-Sink	ALL	1	0.50	_	K/W (5)	Mounting surface flat, smooth, and greased
R _{th-JA} Jun	action-to-Ambient	ALL	_	_	80	K/W ®	Typical socket mount

Typical SPICE Computer Model Parameters (For More Information See Application Note AN-975)

Device	Level, SPICE MOSFET Model	W (m), Channel Width	L (µm), Channel Length	Theta (1/V), Mobility Modulation	UO (CM ² /V-S), Surface Mobility	VTO (V), Threshold Voltage	R1 (0), Drain Resistance	R2 (0), Source Resistance	RG (0), Gate Resistance
ALL	3	0.279	1.2	0.30	450	4.00	1.4	0.02	1.5

CGSO (pf), Gate- Source Capacitance	CGD (F) Gate- Drein Capacitance	E1 (V), Voltage Dependent Voltage Source	LD (nH), Drain Inductance	LS (nH), Source Inductance	LG (nH), Gate Inductance	IS (A), Diode Saturation Current	RS (0), Diode Bulk Resistance
770	C8	2 + 0.995 VDG	4.5	7.5	7.5	3.6 x 10 ⁻¹³	0.026

 $C8 = 1500 \text{ pf} + 1.8 \times 10^{-22} (V_{GE})^{48}$

- Repetitive Rating; Pulse width limited by maximum junction temperature (see figure 5) Refer to current HEXFET reliability report
- @ V_{DD} = 50V, Starting T_J = 25°C, L = 31 mH, RG = 250, Peak I_L = 3.3A.
- $I_{SD} \le 3.3$ A, $di/dt \le 65$ A/ μ s, $V_{DD} \le BV_{DSS}$, $T_{J} \le 150$ °C Suggested $R_{G} = 18\Omega$
- Pulse width ≤ 300 µs; Duty Cycle ≤ 2%

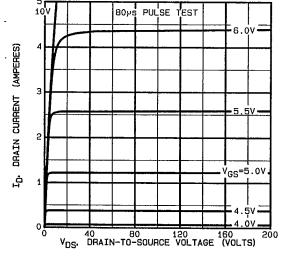
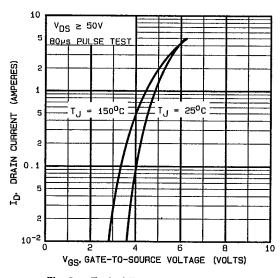
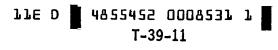




Fig. 1 — Typical Output Characteristics

K/W = °C/W W/K = W/°C

Fig. 2.— Typical Transfer Characteristics

INTERNATIONAL RECTIFIER

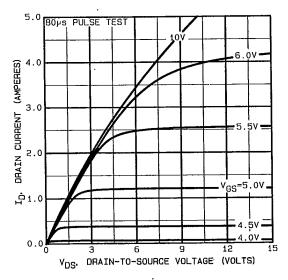


Fig. 3 — Typical Saturation Characteristics

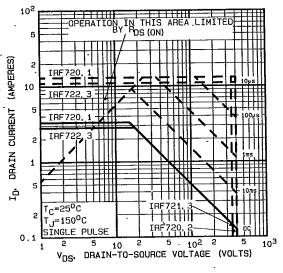


Fig. 4 — Maximum Safe Operating Area

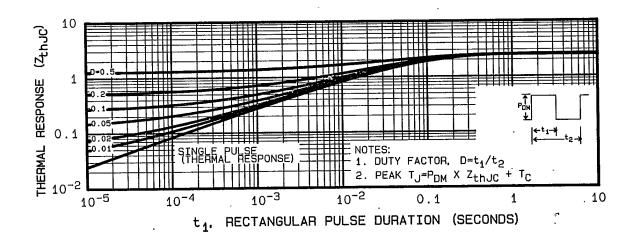


Fig. 5 — Maximum Effective Translent Thermal Impedance, Junction-to-Case Vs. Pulse Duration

INTERNATIONAL RECTIFIER

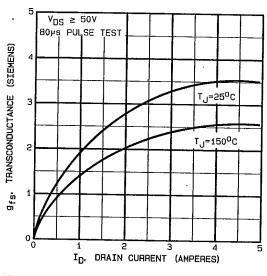


Fig. 6 — Typical Transconductance Vs. Drain Current

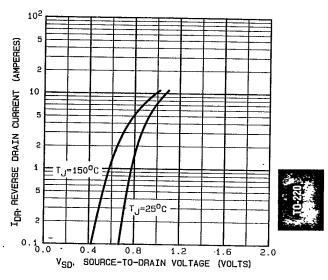


Fig. 7 — Typical Source-Drain Diode Forward Voltage

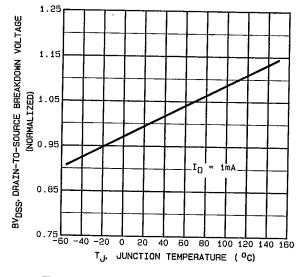


Fig. 8 — Breakdown Voltage Vs. Temperature

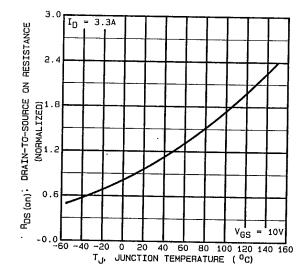


Fig 9 — Normalized Oπ-Resistance Vs. Temperature

INTERNATIONAL RECTIFIER

T-39-11

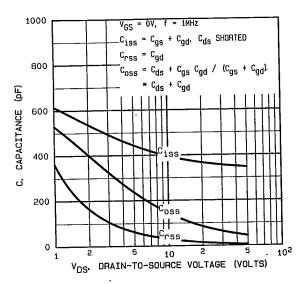


Fig. 10 — Typical Capacitance Vs. Drain-to-Source Voltage

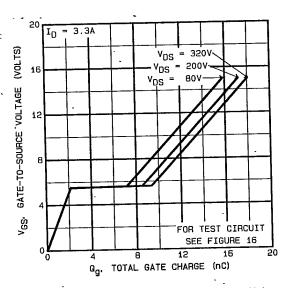


Fig. 11 — Typical Gate Charge Vs. Gate-to-Source Voltage

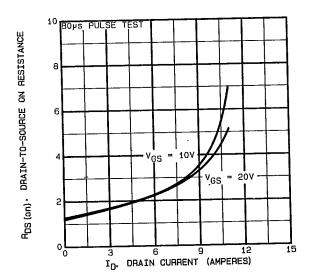


Fig. 12 — Typical On-Resistance Vs. Drain Current

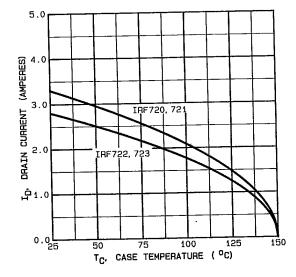


Fig. 13 — Maximum Drain Current Vs. Case Temperature

INTERNATIONAL RECTIFIER

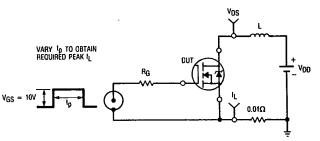


Fig. 14a — Unclamped Inductive Test Circuit

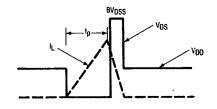


Fig. 14b — Unclamped Inductive Waveforms

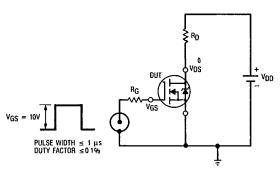


Fig. 15a — Switching Time Test Circuit

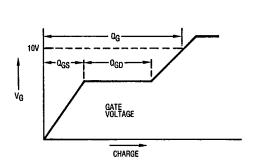


Fig. 16a — Basic Gate Charge Waveform

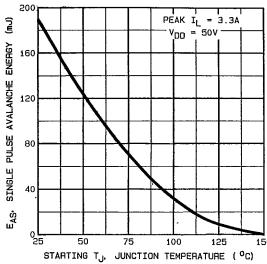


Fig. 14c — Maximum Avalanche Energy Vs. Starting Junction Temperature

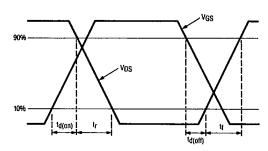


Fig. 15b — Switching Time Waveforms

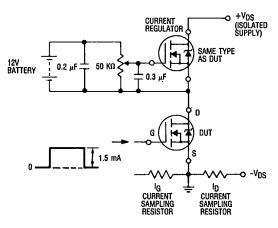


Fig. 16b — Gate Charge Test Circuit

INTERNATIONAL RECTIFIER

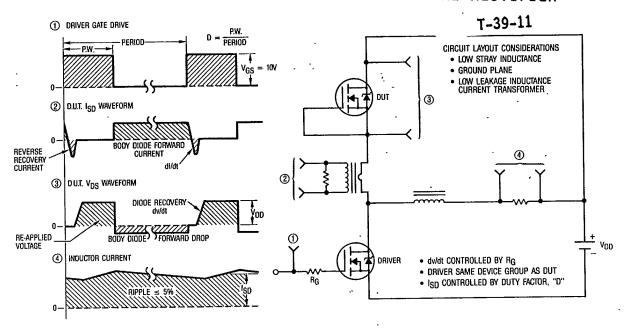
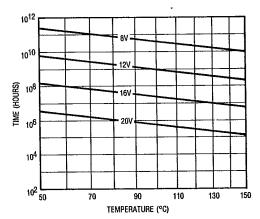
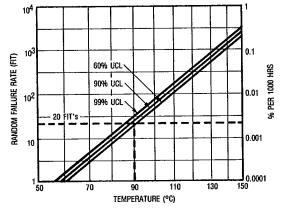




Fig. 17 - Peak Diode Recovery dv/dt Test Circuit

*Fig. 18 — Typical Time to Accumulated 1% Gate Failure

*Fig. 19 — Typical High Temperature Reverse Bias (HTRB) Failure Rate

^{*}The data shown is correct as of April 15, 1987. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office.