FIN1001 3.3V LVDS 1-Bit High Speed Differential Driver

FAIRCHILD

SEMICONDUCTOR

FIN1001 3.3V LVDS 1-Bit High Speed Differential Driver

General Description

This single driver is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL signal levels to LVDS levels with a typical differential output swing of 350 mV which provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed transfer of clock or data.

The FIN1001 can be paired with its companion receiver, the FIN1002, or with any other LVDS receiver.

Features

- Greater than 600Mbs data rate
- 3.3V power supply operation
- 0.5ns maximum differential pulse skew
- 1.5ns maximum propagation delay
- Low power dissipation
- Power-Off protection
- Meets or exceeds the TIA/EIA-644 LVDS standard

December 2001

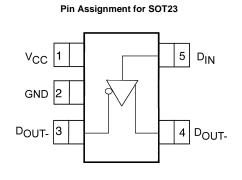
Revised January 2002

Flow-through pinout simplifies PCB layout
5-Lead SOT23 package saves space

Ordering Code:

Order Number	Package Number	Package Description			
FIN1001M5	MA05B	5-Lead SOT23, JEDEC MO-178, 1.6mm [250 Units on Tape and Reel]			
FIN1001M5X	MA05B	5-Lead SOT23, JEDEC MO-178, 1.6mm [3000 Units on Tape and Reel]			

Pin Descriptions


Pin Name	Description
D _{IN}	LVTTL Data Input
D _{OUT+}	Non-inverting LVDS Driver Output
D _{OUT-}	Inverting LVDS Driver Output
V _{CC}	Power Supply
GND	Ground
NC	No Connect

Function Table

Input	Outputs				
D _{IN}	D _{OUT+}	D _{OUT-}			
L	L	Н			
Н	Н	L			

H = HIGH Logic Level L = LOW Logic Level

Connection Diagram

(Top View)

© 2002 Fairchild Semiconductor Corporation DS500721

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (DIN)	-0.5V to +6V
DC Output Voltage (D _{OUT})	-0.5V to +4.6V
Driver Short Circuit Current (I _{OSD})	Continuous
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Max Junction Temperature (T _J)	150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
ESD (Human Body Model)	≥ 7500V
ESD (Machine Model)	≥ 500V

Recommended Operating Conditions

Supply Voltage (V _{CC})	3.0V to 3.6V
Input Voltage (V _{IN})	0 to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

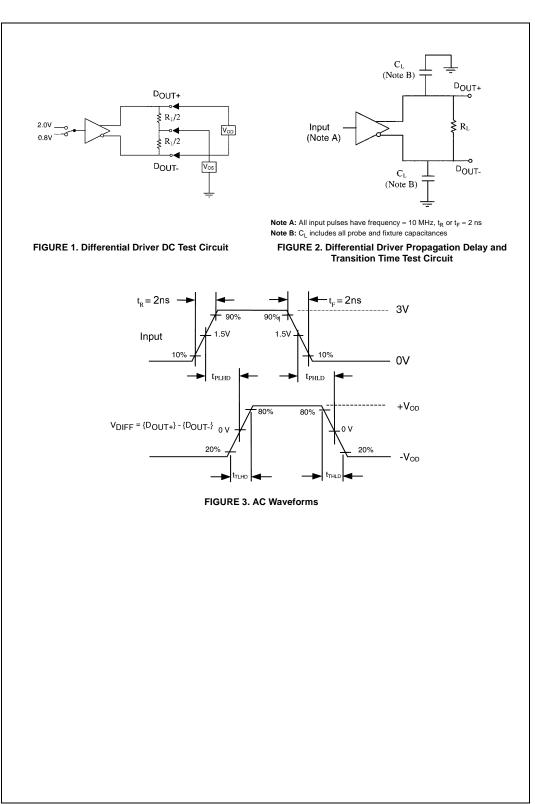
Over supply voltage and operating temperature ranges, unless otherwise specified

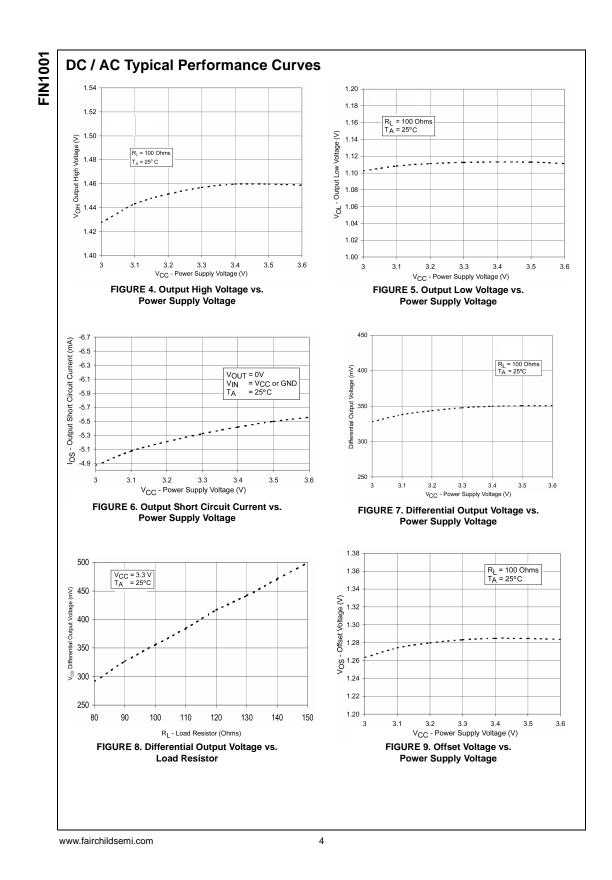
Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Max	Units
V _{OD}	Output Differential Voltage	R _L = 100 Ω, See Figure 1	250	350	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH				25	mV
V _{OS}	Offset Voltage		1.125	1.25	1.375	V
ΔV _{OS}	Offset Magnitude Change from Differential LOW-to-HIGH				25	mV
I _{OFF}	Power-Off Output Current	$V_{CC} = 0V, V_{OUT} = 0V \text{ or } 3.6V$			±20	μΑ
I _{OS}	Short Circuit Output Current	$V_{OUT} = 0V$		-5.5	-8	mA
		$V_{OD} = 0V$		±4	±8	
V _{IH}	Input HIGH Voltage		2.0		V _{CC}	V
V _{IL}	Input LOW Voltage		GND		0.8	V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$			±20	μΑ
I _{I(OFF)}	Power-Off Input Current	$V_{CC} = 0V$, $V_{IN} = 0V$ or 3.6V			±20	μΑ
V _{IK}	Input Clamp Voltage	I _{IK} = -18 mA	-1.5	-0.8		V
I _{CC}	Power Supply Current	No Load, $V_{IN} = 0V$ or V_{CC}		4.5	8	mA
		R_L = 100 $\Omega,~V_{IN}$ = 0V or V_{CC}		6.5	10	IIIA
C _{IN}	Input Capacitance	$V_{CC} = 3.3V$		3.2		pF
COUT	Output Capacitance	$V_{CC} = 0V$		3.3		pF

Note 2: All typical values are at $T_A=25^\circ C$ and with $V_{CC}=3.3 V.$

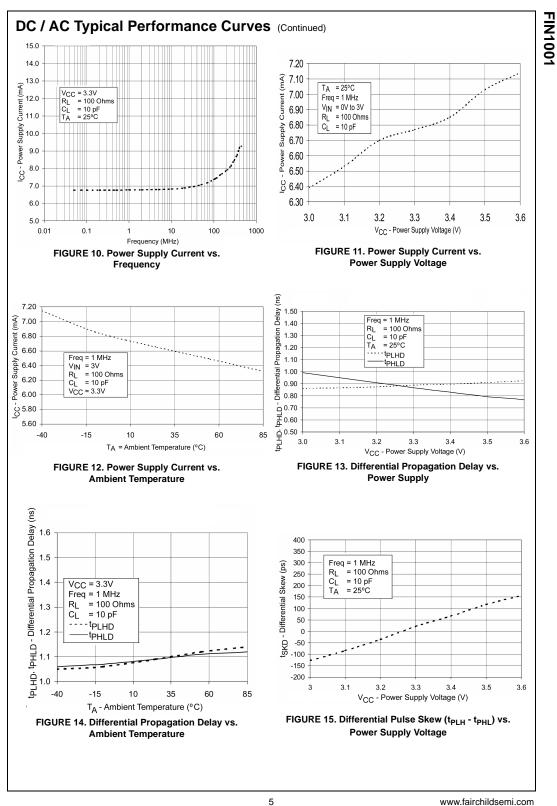
AC Electrical Characteristics

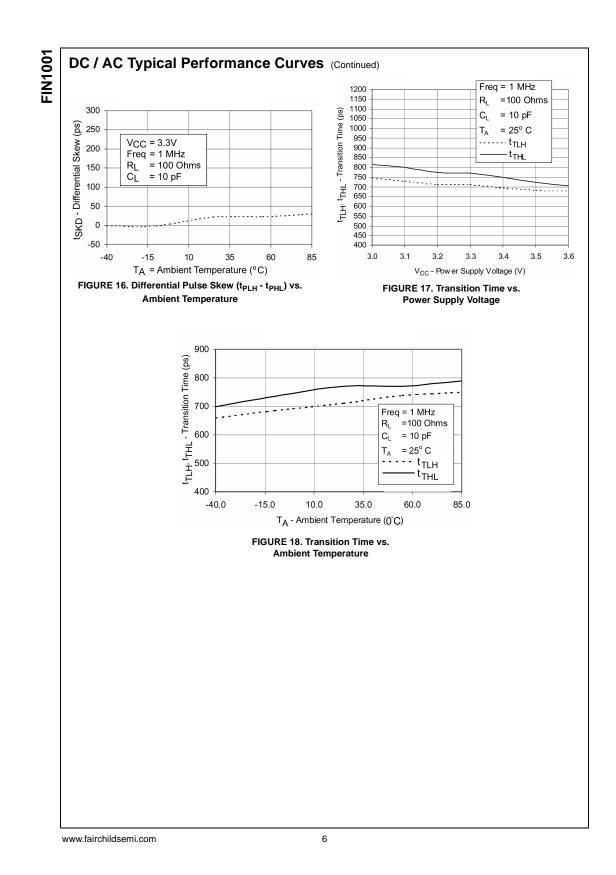
Over supply voltage and operating temperature ranges, unless otherwise specified

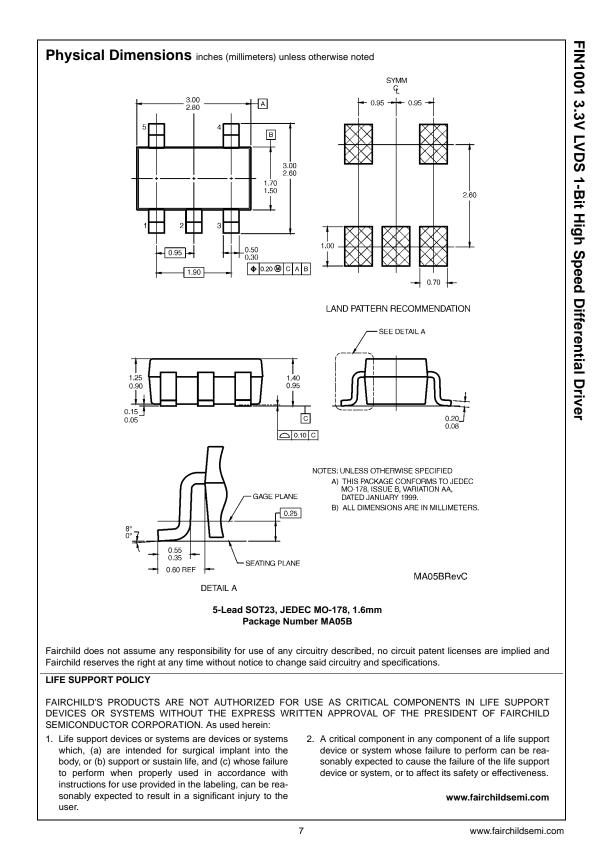

Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Мах	Units
t _{PLHD}	Differential Propagation Delay LOW-to-HIGH		0.5	0.98	1.5	ns
t _{PHLD}	Differential Propagation Delay HIGH-to-LOW	$R_L = 100 \ \Omega, \ C_L = 10 pF,$	0.5	0.93	1.5	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%)	See Figure 2 and Figure 3	0.4	0.5	1.0	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)		0.4	0.5	1.0	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}			0.05	0.5	ns
t _{SK(PP)}	Part-to-Part Skew (Note 4)				1.0	ns


Note 3: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

Note 4: t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.


www.fairchildsemi.com


FIN1001



Downloaded from Elcodis.com electronic components distributor

