HM-7602/03

HM-7602 — Open Collector Outputs HM-7603 - "Three State" Outputs

Features

• 50ns MAXIMUM ADDRESS ACCESS TIME

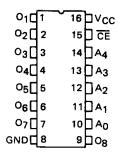
IARRIS

- . "THREE STATE" OUTPUTS WITH ONE ACTIVE LOW CHIP ENABLE
- FAST ACCESS TIME GUARANTEED FOR WORST CASE N2 SEQUENC-ING OVER COMMERCIAL AND MILITARY TEMPERATURE AND VOLTAGE RANGES
- INDUSTRY STANDARD 0,300 INCH 16 PIN PACKAGE
- PRODUCED ON MIL-M-38510 QUALIFIED WAFER FAB LINE
- SIMPLE HIGH SPEED PROGRAMMING PROCEDURE ONE PULSE/BIT TYPICALLY ASSURES FAST PROGRAMMING AND SUPERIOR RELIA-

Description

The HM-7602/03 is a fully decoded high speed Schottky TTL 256/Bit Field Programmable ROM in a 32 word by 8 bit/word format with open collector (HM-7602) or "Three State" (HM-7603) outputs. These PROMs are available in a 16 pin D.I.P. (ceramic or power plastic).

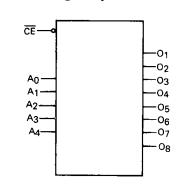
All bits are manufactured storing a logical "1" (Positive Logic) and can be selectively programmed for a logical "0" in any one bit position.

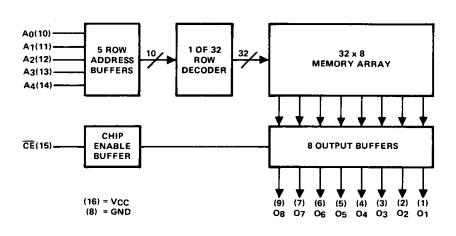

Nickel-chromium fuse technology is used on this and all other Harris Bipolar PROMs.

The HM-7602/03 contains test rows which are in addition to the storage array to assure high programmability and guarantee parametric and A.C. performance. The fuses in these test rows are blown prior to shipment.

There is one chip enable input on the HM-7602/03. CE low enables the chip.

Pinout


TOP VIEW - DIP


PIN NAMES

A0 - A4 Address Inputs 01 - 08 CE **Data Outputs** Chip Enable Input

Logic Symbol

Functional Diagram

Specifications HM-7602/03

ABSOLUTE MAXIMUM RATINGS

Output or Supply Voltage (Operating) -0.3 to +7.0V 5.5V

Storage Temperature

-65°C to +150°C

Address/Enable Input Voltage Address/Enable Input Current

-20mA

Operating Temperature (Ambient) -55°C to +125°C Maximum Junction Temperature

+175°C

Output Sink Current

100mA

CAUTION: Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. (While programming, follow the programming specifications.)

D.C. ELECTRICAL CHARACTERISTICS (Operating)

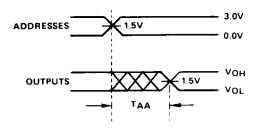
HM-7602/03-5 (V_{CC} = 5.0V \pm 5%, T_A = 0°C to +75°C) HM-7602/03-2/-8 (V_{CC} = 5.0V \pm 10%, T_A = -55°C to +125°C) Typical measurements are at T_A = 25°C, V_{CC} = +5V NOTE: Positive current defined as into device terminals.

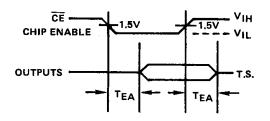
SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS	
IIH IIL	Address/Enable "1" Input Current "0"	_ _	_ -50.0	+40 -250	μΑ μΑ	VIH = VCC Max. VIL = 0.45V	
VIH VIL	Input Threshold "1" Voltage "0"	2.0*	1.5 1.5	_ 0.8*	V V	VCC = VCC Min VCC = VCC Max.	
VOH VOL	Output Voltage "1" "0"	2.4**	3.2** 0.35	_ 0.45	>	IOH = -2.0mA, VCC = VCC Min. IOL = +16mA, VCC = VCC Min.	
IOHE	Output Disable "1" Current "0"		_ _	+100 -100	μΑ μΑ	VOH, VCC = VCC Max. VOL = 0.3V, VCC = VCC Max.	
VÇL	Input Clamp Voltage	-	_	-1.2	V	IIN = -18mA	
los	Output Short Circuit Current	-15**	_	-100**	mA	VCC = VCC Max., VOUT = 0.0V One Output Only for a Max. of 1 Second.	
Icc	Power Supply Current	_	90	130	mA	VCC = VCC Max. All Inputs Grounded	

These are absolute voltages with respect to ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

A.C. ELECTRICAL CHARACTERISTICS (Operating)

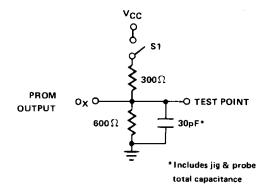
Typical measurements are at TA = +25°C, VCC = +5V


		5\	602/03-5 / ±5% o +75°C	HM-7602/03-2/-8 5V ±10% -55°C to +125°C		
SYMBOL	PARAMETER	TYPICAL	MAXIMUM*	TYPICAL	MAXIMUM*	UNITS
TAA	Address Access Time	30	50	_	60	ns
TEA	Chip Enable Access Time	20	35	-	50	ns


^{*}A.C. limits guaranteed for worst case N² sequencing with maximum test frequency of 5MHz.

CAPACITANCE: TA = 25°C

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
CINA, CINCE	Input Capacitance	12	pF	VCC = 5V, VIN = 2.0V, f = 1MHz
COUT	Output Capacitance	12	pF	VCC = 5V, VOUT = 2.0V, f = 1MHz


^{** &}quot;Three-State" only.

NOTE: As is common to all memory devices, output levels can be undefined during the address access period (TAA); however, the outputs are guaranteed to reach stable levels by TAA. It is not recommended that outputs from this class of devices be used to drive edge triggered inputs on subsequent devices (counters, flip-flops, etc.) without proper intermediate synchronization.

A.C. TEST LOAD

This is the A.C. Test Load which Harris Semiconductor uses in its automatic test equipment, and it is recommended that users of Harris bipolar devices use the same or an equivalent load in performing A.C. testing.