
Vishay Semiconductors

Surface Mountable Input Rectifier Diode, 8 A

PRODUCT SUMMARY		
Package	D-PAK (TO-252AA)	
I _{F(AV)}	8 A	
V_{R}	1600 V	
V _F at I _F	1.1 V	
I _{FSM}	120 A	
T _J max.	150 °C	
Diode variation	Single die	

FEATURES

Halogen-free according to IEC 61249-2-21 definition

FREE

APPLICATIONS

- · Input rectification
- Vishay Semiconductors switches and output rectifiers which are available in identical package outlines

DESCRIPTION

The VS-8EWS16S-M3 rectifier High Voltage Series has been optimized for very low forward voltage drop, with moderate leakage. The glass passivation technology used has reliable operation up to 150 °C junction temperature.

The **high reverse voltage** range available allows design of input stage primary rectification with **outstanding voltage surge** capability.

OUTPUT CURRENT IN TYPICAL APPLICATIONS				
APPLICATIONS	SINGLE-PHASE BRIDGE	THREE-PHASE BRIDGE	UNITS	
NEMA FR-4 or G10 glass fabric-based epoxy with 4 oz. (140 μm) copper	1.2	1.6	_	
Aluminum IMS, R _{thCA} = 15 °C/W	2.5	2.8	A	
Aluminum IMS with heatsink, R _{thCA} = 5 °C/W	5.5	6.5		

Note

• $T_A = 55$ °C, $T_J = 125$ °C, footprint 300 mm²

MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	CHARACTERISTICS	VALUES	UNITS	
I _{F(AV)}	Sinusoidal waveform	8	Α	
V _{RRM}		1600	V	
I _{FSM}		120	A	
V _F	8 A, T _J = 25 °C	1.10	V	
T _J		- 40 to 150	°C	

VOLTAGE RATINGS				
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} AT 150 °C mA	
VS-8EWS16S-M3	1600	1700	0.5	

Document Number: 93384 Revision: 04-Apr-11

VS-8EWS16S-M3 High Voltage Series

Vishay Semiconductors

Surface Mountable Input Rectifier Diode, 8 A

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum average forward current	I _{F(AV)}	$T_C = 96$ °C, 180 ° conduction half sine wave	8	
Maximum peak one cycle	I _{FSM} ⁽¹⁾	10 ms sine pulse, rated V _{RRM} applied	101	Α
non-repetitive surge current	titive surge current	10 ms sine pulse, no voltage reapplied	120	
Maximum I ² t for fusing I ² t	10 ms sine pulse, rated V _{RRM} applied	51	A ² s	
	1-1	10 ms sine pulse, no voltage reapplied	72	A-S
Maximum I ² √t for fusing	I²√t	t = 0.1 ms to 10 ms, no voltage reapplied	510	A²√s

Note

⁽¹⁾ Connecting one pin only.

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS
Maximum forward voltage drop	V_{FM}	8 A, T _J = 25 °C		1.1	V
Forward slope resistance	r _t	r_t $V_{F(TO)}$ $T_J = 150 ^{\circ}C$		20	mΩ
Threshold voltage	V _{F(TO)}			0.82	V
Maximum reverse leakage current		T _J = 25 °C	V _R = Rated V _{RRM}	0.05	mA
iviaximum reverse leakage current	ent I _{RM}	$T_J = 150 ^{\circ}\text{C}$	0.50	IIIA	

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		- 40 to 150	°C
Soldering temperature	T _S		240	
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	2.5	°C/W
Typical thermal resistance, junction to ambient (PCB mount)	R _{thJA} ⁽¹⁾		62	C/VV
Approximate weight			1	g
Approximate weight			0.03	OZ.
Marking device		Case style TO-252AA (D-PAK)	8EW	S16S

Note

 $^{^{(1)}}$ When mounted on 1" square (650 mm²) PCB of FR-4 or G-10 material 4 oz. (140 μ m) copper 40 °C/W For recommended footprint and soldering techniques refer to application note #AN-994

Surface Mountable Input Rectifier Diode, 8 A

Vishay Semiconductors

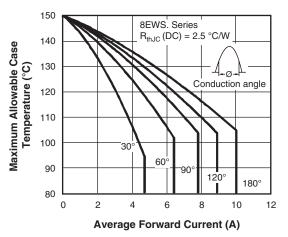


Fig. 1 - Current Rating Characteristics

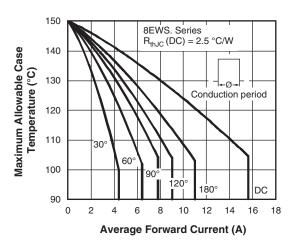


Fig. 2 - Current Rating Characteristics

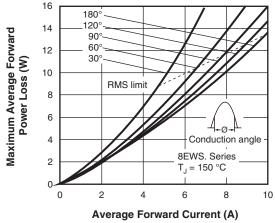


Fig. 3 - Forward Power Loss Characteristics

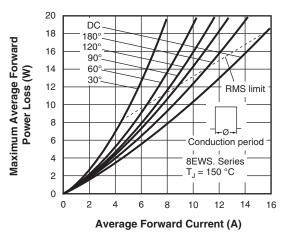
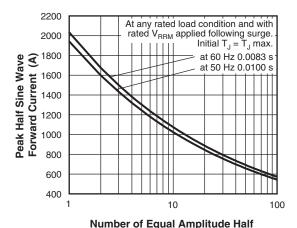



Fig. 4 - Forward Power Loss Characteristics

Cycle Current Pulses (N)
Fig. 5 - Maximum Non-Repetitive Surge Current

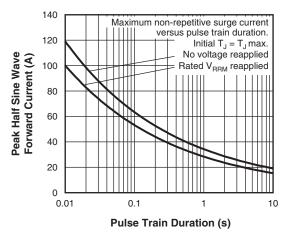


Fig. 6 - Maximum Non-Repetitive Surge Current

VS-8EWS16S-M3 High Voltage Series

Vishay Semiconductors

Surface Mountable Input Rectifier Diode, 8 A

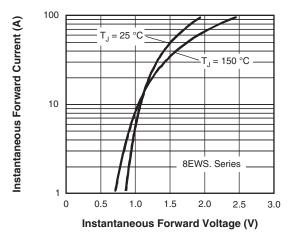


Fig. 7 - Forward Voltage Drop Characteristics

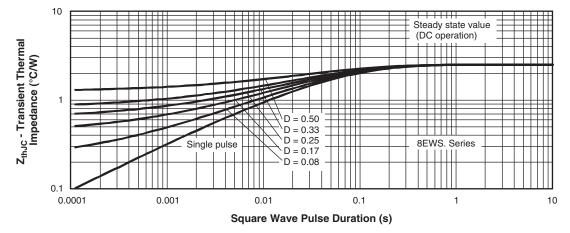
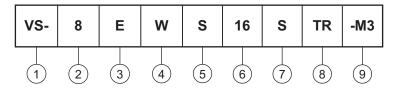


Fig. 8 - Thermal Impedance Z_{thJC} Characteristics


VS-8EWS16S-M3 High Voltage Series

Surface Mountable Input Rectifier Diode, 8 A

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

Vishay Semiconductors product

Current rating (8 = 8 A)

Circuit configuration:

E = Single diode

4 Package:

W = D-PAK

5 Type of silicon:

S = Standard recovery rectifier

Voltage code x 100 = V_{RRM} (16 = 1600 V) 6

S = Surface mountable

• TR = Tape and reel

• TRR = Tape and reel (right oriented)

• TRL = Tape and reel (left oriented)

9 Environmental digit:

-M3 = Halogen-free, RoHS compliant and terminations lead (Pb)-free

ORDERING INFORMATION (Example)					
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION		
VS-8EWS16S-M3	75	3000	Antistatic plastic tubes		
VS-8EWS16STR-M3	2000	2000	13" diameter reel		
VS-8EWS16STRL-M3	3000	3000	13" diameter reel		
VS-8EWS16STRR-M3	3000	3000	13" diameter reel		

LINKS TO RELATED DOCUMENTS			
Dimensions <u>www.vishay.com/doc?95016</u>			
Part marking information	www.vishay.com/doc?95176		
Packaging information	www.vishay.com/doc?95033		

Document Number: 93384 Revision: 04-Apr-11

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1