
PRELIMINARY

CMPA2560025D 25 W, 2.5 - 6.0 GHz, GaN MMIC, Power Amplifier

Cree's CMP2560025D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling very wide bandwidths to be achieved.

PN: CMPA2560025D

Typical Performance Over 2.5-6.0 GHz $(T_c = 25^{\circ}c)$

Parameter	2.5 GHz	4.0 GHz	6.0 GHz	Units
Gain	27.5	24.3	23.1	dB
Saturated Output Power, P _{SAT} ¹	35.8	37.5	25.6	W
Power Gain @ P _{out} = 43 dBm	23.1	20.9	16.3	dB
PAE @ P _{out} 43 dBm	31.5	32.8	30.7	%

Note¹: P_{sat} is defined as the RF output power where the device starts to draw positive gate current in the range of 7-13 mA.

Features

- 24 dB Small Signal Gain
- 25 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- Size 0.180 x 0.145 x 0.004 inches

Applications

- Ultra Broadband Amplifiers
- Fiber Drivers
- Test Instrumentation
- EMC Amplifier Drivers

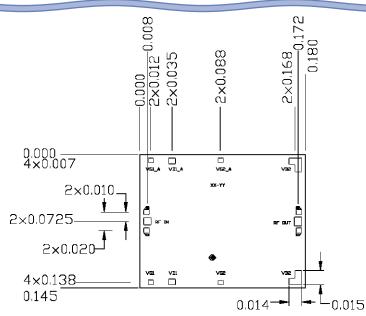
Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units
Drain-source Voltage	V _{DSS}	84	VDC
Gate-source Voltage	V _{GS}	-10, +2	VDC
Storage Temperature	Τ _{stg}	-65, +150	°C
Operating Junction Temperature	T,	225	°C
Thermal Resistance, Junction to Case (packaged) ¹	R _{ejc}	2.5	°C/W
Mounting Temperature (30 seconds)	Τ _s	320	°C

Note¹ Eutectic die attach using 80/20 AuSn solder mounted to a 40 mil thick CuW carrier.

Electrical Characteristics (Frequency = 2.5 GHz to 6.0 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold	$V_{\rm TH}$	-3.8	-3.3	-2.3	V	$V_{_{DS}}$ = 10 V, $I_{_{D}}$ = 20 mA
Saturated Drain Current	$I_{\rm DS}$	8.0	9.7	-	А	$V_{_{ m DS}}$ = 6.0 V, $V_{_{ m GS}}$ = 2.0 V
Drain-Source Breakdown Voltage	$V_{_{BD}}$	84	100	-	V	$V_{_{ m GS}}$ = -8 V, $I_{_{ m D}}$ = 20 mA
On Resistance	R _{on}	-	0.35	-	Ω	$V_{\rm DS} = 0.1 V$
Gate Forward Voltage	V_{G-ON}	-	1.9	-	V	$I_{gs} = 3.6 \text{ mA}$
RF Characteristics						
Small Signal Gain	S21	21	25	-	dB	$V_{_{\rm DD}}$ = 26 V, $I_{_{\rm DQ}}$ = 1200 mA
Power Output at 2.5 GHz	P _{out1}	30	-	-	W	$V_{_{DD}}$ = 26 V, $I_{_{DQ}}$ = 1200 mA, $P_{_{IN}}$ ≤ 26 dBm
Power Output at 3.0 GHz	P _{OUT2}	20	25	-	W	$V_{_{\rm DD}}$ = 26 V, $I_{_{\rm DQ}}$ = 1200 mA, $P_{_{\rm IN}}$ \leq 26 dBm
Power Output at 4.0 GHz	P _{OUT3}	20	30	-	W	$V_{_{DD}}$ = 26 V, $I_{_{DQ}}$ = 1200 mA, $P_{_{IN}}$ ≤ 26 dBm
Power Added Efficiency	PAE	-	35	-	%	$V_{_{\rm DD}}$ = 26 V, $I_{_{\rm DQ}}$ = 1200 mA
Power Gain	G _p	-	20	-	dB	$V_{_{\rm DD}}$ = 26 V, $I_{_{\rm DQ}}$ = 1200 mA
Input Return Loss	S11	-	6	-	dB	$V_{_{\rm DD}}$ = 26 V, $I_{_{\rm DQ}}$ = 1200 mA
Output Return Loss	S22	-	5	-	dB	$V_{_{\rm DD}}$ = 26 V, $I_{_{\rm DQ}}$ = 1200 mA
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles, $V_{_{DD}}$ = 26 V, $I_{_{DQ}}$ = 1200 mA, $P_{_{OUT}}$ = 25W CW


Copyright © 2008-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

2 wnloaded from

Die Dimensions (units in inches)

Overall die size 0.180×0.145 (+0/-0.005) inches, die thickness 0.004 inches. All Gate and Drain pads must be wire bonded for electrical connection.

Pad Number	Function	Description	Pad Size (in)	Note
1	RF-IN	RF-Input pad. Matched to 50 ohm. Requires gate control from an external bias $-T$ from -1.5 V to -2.5 V and external blocking capacitor.	0.008" × 0.008"	3
2	VG1_A	Gate control for stage 1. V $_{\rm G}\sim$ 1.5 - 2.5 V.	0.014" x 0.014"	1,2
3	VG1_B	Gate control for stage 1. V $_{\rm G} \sim$ 1.5 - 2.5 V.	0.014" x 0.014"	1,2
4	VD1_A	Drain supply for stage 1. $V_{D} = 26$ V.	0.019" x 0.016"	1
5	VD1_B	Drain supply for stage 1. $V_{D} = 26$ V.	0.019" x 0.016"	1
6	VG2_A	Gate control for stage 2A. $V_{\rm g} \sim$ 1.5 - 2.5 V.	0.014" x 0.014"	1
7	VG2_B	Gate control for stage 2A. V $_{\rm g} \sim$ 1.5 - 2.5 V.	0.014" x 0.014"	1
8	VD2_A	Drain supply for stage 2A. $V_{D} = 26$ V.	А	1
9	VD2_B	Drain supply for stage 2B. $V_{\rm D}$ = 26 V.	А	1
10	RF-Out	This pad is DC blocked internally. The DC impedance \sim 0 ohm due output matching circuit. Requires external matching circuit for optimal performance for f >4.0 GHz.	0.008" × 0.008"	3

Notes:

¹ Attach bypass capacitor to port 2-9 per application circuit.

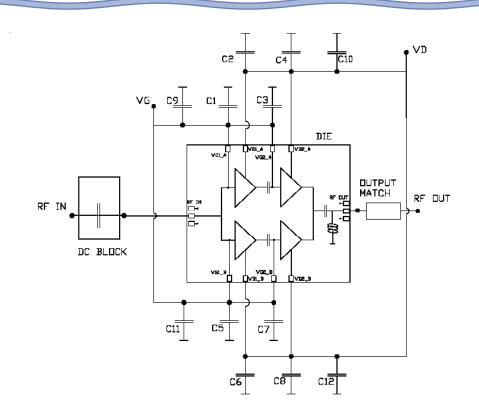
² VG1_A and VG1_B is connected internally so it would be enough to connect either one for proper operation.

³ The RF Input and Output pad have a ground-signal-ground with a pitch of 10 mil (250 um).

Die Assembly Notes:

3

- Recommended solder is AuSn (80/20) solder. Refer to Cree's website for the Eutectic Die Bond Procedure application note at http://www.cree.com/products/wireless_appnotes.asp
- Vacuum collet is the preferred method of pick-up.
- The backside of the die is the Source (ground) contact.
- Die back side gold plating is 5 microns thick minimum.
- Thermosonic ball or wedge bonding are the preferred connection methods.
- Gold wire must be used for connections.
- Use the die label (XX-YY) for correct orientation.


Copyright © 2008-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

CMPA2560025D Rev 0.5, Preliminary

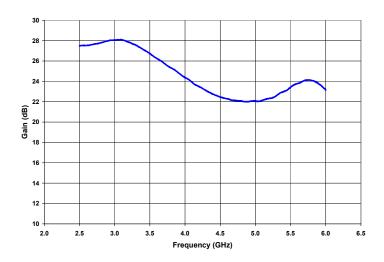
Block Diagram Showing Additional Capacitors & Output Matching Section for Operation Over 2.5 to 6.0 GHz

Designator	Description	Quantity
C1,C2,C3,C4,C5,C6,C7,C8	CAP, 120pF, +/-10%, SINGLE LAYER, 0.030", Er 3300, 100V, Ni/Au TERMINATION	8
C9,C10,C11,C12	CAP, 680pF, +/-10%, SINGLE LAYER, 0.070", Er 3300, 100V, Ni/Au TERMINATION	4

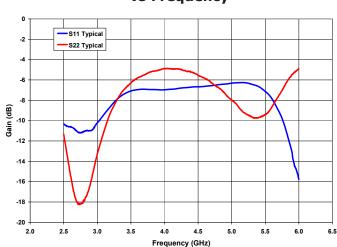
Notes:

¹ An additional microstripline of 31 ohm impedance and electrical length of 72° at 6.0 GHz at the output of the MMIC is required to optimize overall performance in the 2.5 to 6.0 GHz frequency band.

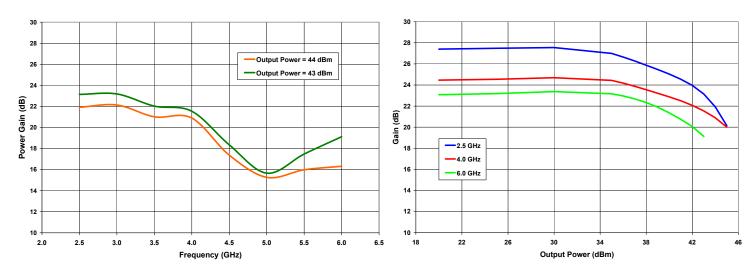
 2 The input, output and decoupling capacitors should be attached as close as possible to the die- typical distance is 5 to 10 mils with a maximum of 15 mils.


³ The MMIC die and capacitors should be connected with 2 mil gold bond wires.

Copyright © 2008-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.


Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

Typical Performance of the CMPA2560025D as Measured in CMPA2560025F-TB


Small Signal Gain vs Frequency

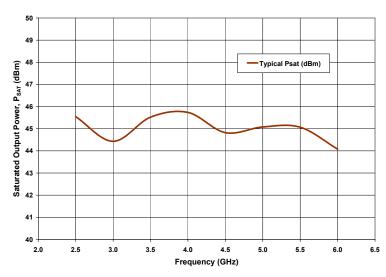
Input & Output Return Losses vs Frequency

Power Gain vs Frequency

Gain vs Output Power as a Function of Frequency

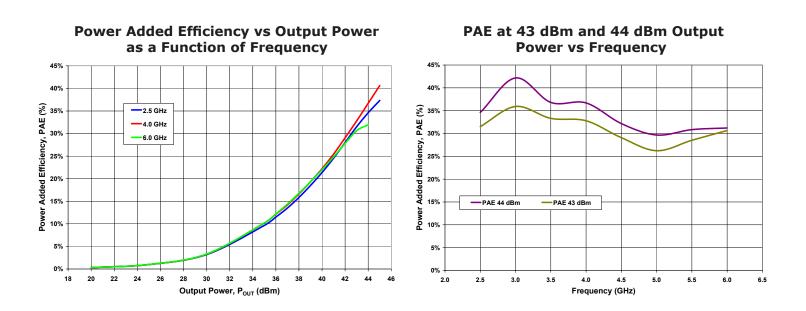
Copyright © 2008-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless


CMPA2560025D Rev 0.5, Preliminary

s.com electronic components dis

5


Typical Performance of the CMPA2560025D as Measured in CMPA2560025F-TB

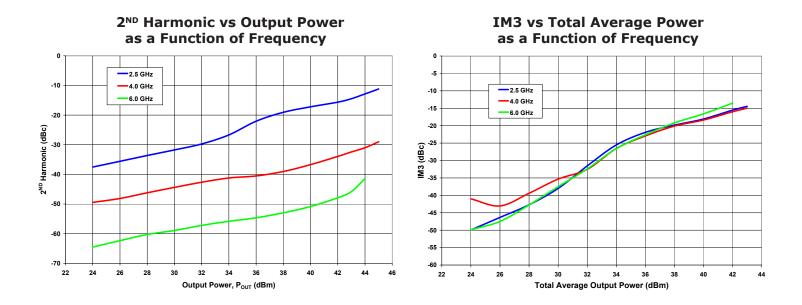
P _{sat} (dBm)	P _{sat} (W)
45.54	35.8
44.43	27.7
45.52	35.7
45.74	37.5
44.82	30.4
45.08	32.2
45.07	32.1
44.08	25.6
	45.54 44.43 45.52 45.74 44.82 45.08 45.07

Saturated Output Power Performance (P_{SAT}) vs Frequency

Note: P_{sat} is defined as the RF output power where the device starts to draw positive gate current in the range of 7-13 mA.

Copyright © 2008-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless


CMPA2560025D Rev 0.5, Preliminary

com electronic components distric

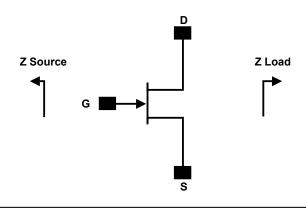
6

Typical Performance of the CMPA2560025D as Measured in CMPA2560025F-TB

Gain at P_{out} of 40 dBm at 25°C & 75°C vs Frequency 30 25 20 Gain (dB) 15 -Ambient (25°C) 10 -Hot (75°C) 5 0 2.5 2.8 3.1 3.7 4.0 3.4 Frequency (GHz)

Copyright © 2008-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless



7

electronic components distributor

Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
2500	50 + j0	36.2 - j15.4
3000	50 + j0	32.7 - j15.4
3500	50 + j0	29.6 - j14.7
4000	50 + j0	27.0 - j13.8
4500	50 + j0	24.8 - j12.1
5000	50 + j0	23.0 - j10.4
5500	50 + j0	21.6 - j8.6
6000	50 + j0	20.6 - j6.7

Note 1. $V_{_{\rm DD}}$ = 26V, $I_{_{\rm DQ}}$ = 1200mA in the 780019 package.

Note 2. Optimized for P_{SAT}

Note 3: The quoted impedances are those presented to the die by the CMPA2560025F-TB demonstration amplifier, fully de-imbedded to the die bond pad reference plane.

Copyright © 2008-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 www.cree.com/wireless

Ryan Baker Cree, Marketing 1.919.287.7816

Tom Dekker Cree, Sales Director 1.919.313.5639

Copyright © 2008-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

9 wnloaded from F