PRELIMINARY

CMPA0060005F

5 W, 20 MHz - 6000 MHz, GaN MMIC Power Amplifier

Cree's CMPA0060005F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC employs a distributed (traveling-wave) amplifier design approach, enabling extremely wide bandwidths to be achieved in a small footprint screw-down package featuring a copper-tungsten heat sink.

PN: CMPA0060005F Package Type: 780019

Typical Performance Over 20 MHz - 6.0 GHz ($T_c = 25$ °c)

Parameter	20 MHz	0.5 GHz	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Gain	19.8	18.5	17.8	16.7	16.5	18.1	17.0	18.9	dB
Saturated Output Power, P _{SAT} ¹	8.1	7.3	7.7	7.9	5.1	5.9	6.9	5.7	W
Power Gain @ P _{OUT} 37 dBm	17.8	16.4	15.6	14.7	13.5	14.3	13.5	13.6	dB
PAE @ P _{OUT} 37 dBm	23	20	20	20	17	20	19	24	%

Note1: P_{SAT} is defined as the RF output power where the device starts to draw positive gate current in the range of 2-4 mA. Note²: $V_{DD} = 48 \text{ V, } I_{D} = 100 \text{ mA}$

Features

- 17 dB Small Signal Gain
- 5 W Typical P_{SAT}
- Operation up to 48 V
- High Breakdown Voltage
- High Temperature Operation
- $\sim 0.5'' \times 0.5''$ total product size

Applications

- Ultra Broadband Amplifiers
- Fiber Drivers
- Test Instrumentation
- EMC Amplifier **Drivers**

Figure 1.

U.S. Department of Commerce Export License May Be Required.

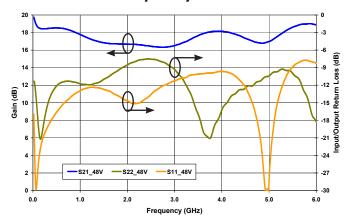
Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units
Drain-source Voltage	$V_{\scriptscriptstyle DSS}$	84	VDC
Gate-source Voltage	V_{GS}	-10, +2	VDC
Storage Temperature	T_{STG}	-55, +150	°C
Operating Junction Temperature	T,	175	°C
Forward Gate Current	I_{G}	4	mA
Screw Torque	Т	40	in-oz
Thermal Resistance, Junction to Case	$R_{\theta JC}$	4.3	°C/W

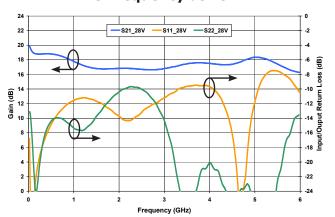
Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage ²	V _p	-	-2.5	-	V	$V_{DS} = 10 \text{ V, } I_{D} = 20 \text{ mA}$
Gate Quiescent Voltage	V	-	-2.0	-	V	$V_{DS} = 28 \text{ V, } I_{D} = 100 \text{ mA}$
Saturated Drain Current	I_{DC}	-	1.4	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
RF Characteristics						
Small Signal Gain	S21	-	17	-	dB	V_{DD} = 28 V, I_{DQ} = 100 mA
Input Return Loss	S11	-	12	-	dB	V_{DD} = 28 V, I_{DQ} = 100 mA
Output Return Loss	S22	-	18	-	dB	V_{DD} = 28 V, I_{DQ} = 100 mA
Power Output at P _{SAT}	P _{SAT}	5	6	-	W	V_{DD} = 28 V, I_{DQ} = 100 mA
Power Added Efficiency @ 33 dBm P _{OUT}	PAE	-	20	-	%	V_{DD} = 28 V, I_{DQ} = 100 mA
Power Gain @ 33 dBm P _{OUT}	G _P	-	14	-	dB	V_{DD} = 28 V, I_{DQ} = 100 mA
Output Mismatch Stress	VSWR	-	5:1	-	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA},$ $P_{IN} = 23 \text{ dBm}$

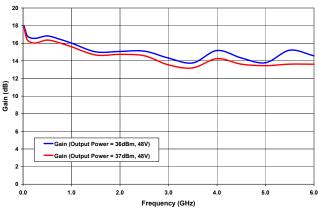
Notes:

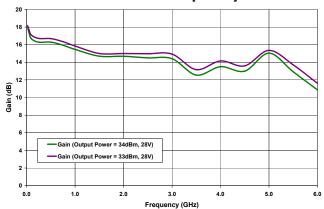

 $^{^{1}}$ P_{SAT} is defined as the RF output power where the device starts to draw positive gate current in the range of 2-4 mA.

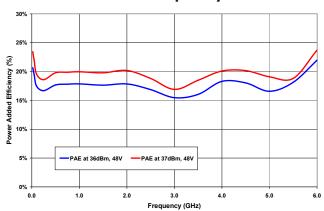
² The device will draw approximately 20-25 mA at pinch off due to the internal circuit structure.

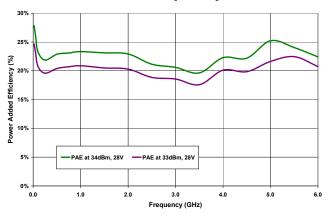


Typical Performance

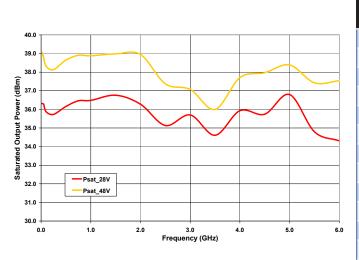

Small Signal Gain and Return Losses vs Frequency at 48 V


Small Signal Gain and Return Losses vs Frequency at 28 V

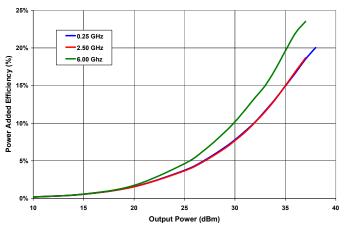

Power Gain vs Frequency at 48V

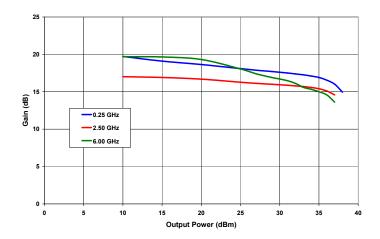

Power Gain vs Frequency at 28V

PAE at 36 & 37 dBm Output Power vs Frequency at 48 V


PAE at 33 & 34 dBm Output Power vs Frequency at 28 V

Typical Performance


Saturated Output Power Performance (P_{SAT}) vs Frequency


Frequency (GHz)	P _{SAT} at 28V (dBm)	P _{SAT} at 48V (dBm)	P _{SAT} at 28V (W)	P _{SAT} at 48V (W)
0.02	36.6	39.1	4.3	8.1
0.5	36.2	38.7	4.1	7.3
1.0	36.5	38.9	4.5	7.7
1.5	36.8	39.0	4.7	7.9
2.0	36.3	39.0	4.2	7.9
2.5	35.1	37.4	3.3	5.5
3.0	35.7	37.1	3.7	5.1
3.5	34.6	36.0	2.9	3.8
4.0	35.9	37.7	3.9	5.9
4.5	35.7	38.0	3.8	6.3
5.0	36.8	38.4	4.8	6.9
5.5	34.8	37.4	3.0	5.5
6.0	34.3	37.5	2.7	5.7

Note: P_{SAT} is defined as the RF output power where the device starts to draw positive gate current in the range of 2-4 mA.

Power Added Efficiency vs Output Power as a Function of Frequency at 48V

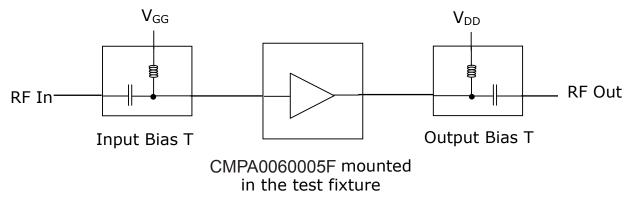
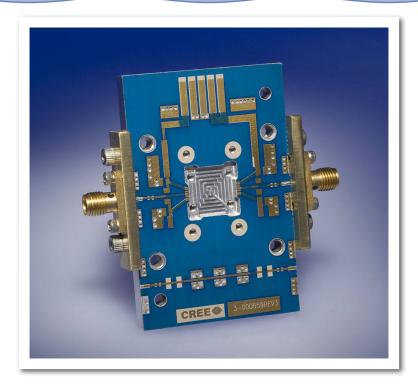
Gain vs Output Power at 48 V

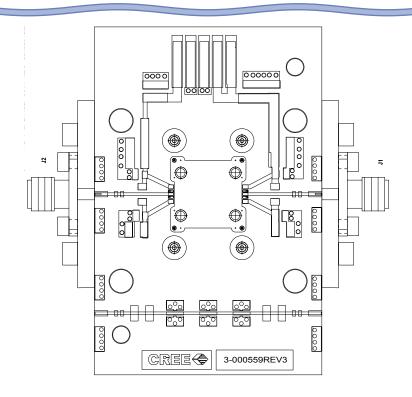
General Device Information

The CMPA0060005F is a GaN HEMT MMIC Distributed Driver Amplifier, which operates between 20 MHz - 6.0 GHz. The amplifier typically provides 17 dB of small signal gain and 5 W saturated output power with an associated power added efficiency of better than 20 %. The wideband amplifier's input and output are internally matched to 50 Ohm. The amplifier requires bias from appropriate Bias-T's, through the RF input and output ports.

The CMPA0060005F is provided in a flange package format. The input and output connections are gold plated to enable gold bond wire attach at the next level assembly.

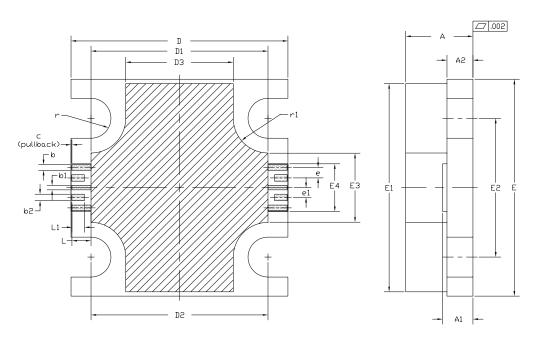
The measurements in this data sheet were taken on devices wire-bonded to the test fixture with 2 mil gold bond wires. The CMPA0060005F-TB and the device were then measured using external Bias-T's, (Tecdia: TBT-03M1), as shown in Figure 2. The Bias-T's were included in the calibration of the test system. All other losses associated with the test fixture are included in the measurements.


Figure 2. Typical test system setup required for measuring CMPA0060005F-TB

CMPA0060005F-TB Demonstration Amplifier Circuit

CMPA0060005F-TB Demonstration Amplifier Circuit Outline



CMPA0060005F-TB Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
J1,J2	CONNECTOR, SMA, AMP1052901-1	2
-	PCB, TACONIC, RF-35-0100-CH/CH	1
Q1	CMPA0060005F	1

Notes

Product Dimensions CMPA0060005F (Package Type - 780019)

NOTES:

- 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INCHES		MILLIM	NOTE		
DIM	MIN	MAX	MIN	MAX	NOIE	
Α	0.148	0.162	3.76	4.12	-	
A1	0.066	0.076	1.67	1.93	-	
A2	0.056	0.064	1.42	1.63	_	
ь	0.0	13	0	0.33		
b1	0.0	10	0.25		x2	
b2	0.0	15	0.38		×4	
C	0.0	02	0.	05	x2	
D	0.495	0.505	12.57	12.83	_	
D1	0.403	0.413	10.23	10.49	-	
D2	0.408		10.36		-	
D3	0.243	0.253	6.17	6.43	-	
E	0.495	0.505	12.57	12.83	-	
E1	0.475	0.485	12.06	12.32	_	
E2	0.320		8.13		_	
E3	0.155	0.165	3.93	4.19	-	
E4	0.105	0.115	2.66	2.92	_	
е	0.024		0.61		×4	
e1	0.023		0.57		x4	
L	0.044		1.12		x6	
L1	0.029		0.74		×4	
r	R0.046		R1.17		x4	
r1	R0.080		R2	x4		

¹The CMPA0060005F is connected to the PCB with 2.0 mil Au bond wires.

² An external bias T is required.

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 www.cree.com/wireless

Ryan Baker Cree, Marketing 1.919.287.7816

Tom Dekker Cree, Sales Director 1.919.313.5639