## NPN Silicon Epitaxial Planar Transistor

## TV VHF TUNER RF AMPLIFIER

## (FORWARD AGC)

The transistor is subdivided into three group, $\mathrm{R}, ~ \mathrm{O}$ and $Y$, according to its DC current gain.

On special request, these transistors can be manufactured in different pin configurations.


1. Emitter 2. Collector 3. Base

TO-92 Plastic Package
Weight approx. 0.19g

Absolute Maximum Ratings ( $\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )

|  | Symbol | Value | Unit |
| :--- | :---: | :---: | :---: |
| Collector Base Voltage | $\mathrm{V}_{\text {CBO }}$ | 30 | V |
| Collector Emitter Voltage | $\mathrm{V}_{\text {CEO }}$ | 30 | V |
| Emitter Base Voltage | $\mathrm{V}_{\text {EBO }}$ | 4 | V |
| Collector Current | $\mathrm{I}_{\mathrm{C}}$ | 20 | mA |
| Collector Dissipation | $\mathrm{P}_{\text {tot }}$ | 250 | mW |
| Junction Temperature | $\mathrm{T}_{\mathrm{j}}$ | 150 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $\mathrm{T}_{\mathrm{S}}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

Characteristics at $\mathrm{T}_{\mathrm{amb}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

|  | Symbol | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC Current Gain <br> at $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$ | $\begin{aligned} & \mathrm{h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \end{aligned}$ | $\begin{aligned} & 40 \\ & 60 \\ & 90 \end{aligned}$ |  | $\begin{gathered} 80 \\ 140 \\ 180 \end{gathered}$ | - |
| Collector Base Breakdown Voltage at $I_{C}=10 \mu \mathrm{~A}$ | $\mathrm{V}_{\text {(BR)Cbo }}$ | 30 | - | - | V |
| Collector Emitter Breakdown Voltage at $\mathrm{Ic}_{\mathrm{c}}=5 \mathrm{~mA}$ | $\mathrm{V}_{\text {(BR)CEO }}$ | 30 | - | - | V |
| Emitter Base Breakdown Voltage at $\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$ | $\mathrm{V}_{\text {(BR) }}$ Ebo | 4 | - | - | V |
| Collector Cutoff Current at $\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$ | $\mathrm{I}_{\text {cbo }}$ | - | - | 0.1 | $\mu \mathrm{A}$ |
| AGC Current <br> $\mathrm{I}_{\mathrm{E}}$ at $\mathrm{G}_{\mathrm{pe}}=-30 \mathrm{~dB}, \mathrm{f}=200 \mathrm{MHz}$ | $\mathrm{I}_{\text {AGC }}$ | - | -10 | -12 | mA |
| Reverse Transfer Capacitance at $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{Cr}_{\text {re }}$ | - | 0.35 | 0.5 | pF |
| Current Gain Bandwidth Product at $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$ | $\mathrm{f}_{T}$ | 400 | 700 | - | MHz |
| Power Gain at $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{I}_{\mathrm{E}}=-3 \mathrm{~mA}$ | $\mathrm{G}_{\text {pe }}$ | 20 | 24 | - | dB |
| Noise Figure $\begin{aligned} & \text { at } V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-3 \mathrm{~mA} \\ & \mathrm{f}=200 \mathrm{MHz}, R_{\mathrm{S}}=50 \Omega \end{aligned}$ | NF | - | 2.0 | 3.0 | dB |

