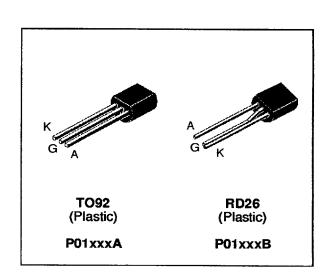


P01xxxA/B


SENSITIVE GATE SCR

FEATURES

- IT(RMS) = 0.8A
- V_{DRM} = 100V to 400V
- Low I_{GT} < 1µA max to < 200µA

DESCRIPTION

The P01xxxA/B series of SCRs uses a high performance planar PNPN technology. These parts are intended for general purpose applications where low gate sensitivity is required.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
I _{T(RMS)}	RMS on-state current (180° conduction angle)	TI= 55°C	0.8	А
I _{T(AV)}	Mean on-state current (180° conduction angle)	TI= 55°C	0.5	А
ITSM	Non repetitive surge peak on-state current	tp = 8.3 ms	8	Α
	(T _j initial = 25°C)	tp = 10 ms	7	
l ² t	l ² t Value for fusing	tp = 10 ms	0.24	A ² s
dl/dt	Critical rate of rise of on-state current $k_0 = 10 \text{ mA}$ dig/dt = 0.1 A/ μ s.		30	A/μs
T _{stg} T _j	Storage and operating junction temperature	- 40, +150 - 40, +125	°C	
TI	Maximum lead temperature for soldering dur 2mm from case	260	°C	

Symbol	Parameter		Unit			
		Α	В	С	D	Oilit
V _{DRM} V _{RRM}	Repetitive peak off-state voltage $T_j = 125^{\circ}C$ $R_{GK} = 1K\Omega$	100	200	300	400	٧

January 1995

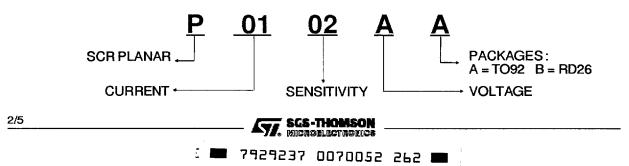
1/5

: **3** 7929237 0070051 326

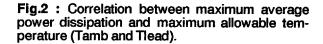
P01xxxA/B

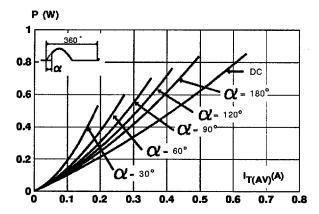
THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
Rth(j-a)	Junction to ambient	150	•C\W
Rth(j-l)	Junction to leads for DC	80	°C/W


GATE CHARACTERISTICS (maximum values)

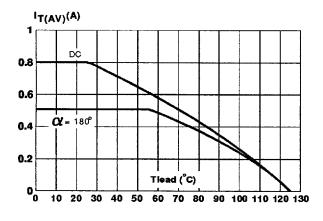
 $P_{G (AV)} = 0.1 \text{ W}$ $P_{GM} = 2 \text{ W (tp} = 20 \,\mu\text{s)}$ $I_{GM} = 1 \text{ A (tp} = 20 \,\mu\text{s)}$


ELECTRICAL CHARACTERISTICS


Symbol	Test Conditions				Unit				
Symbol				02	09	11	15	18	Onne
lат	V _D =12V (DC) R _L =140Ω	Tj= 25°C	MIN			4	15	0.5	μΑ
			MAX	200	1	25	50	5	
V _{GT}	V _D =12V (DC) R _L =140Ω	Tj= 25°C	MAX	0.8					٧
V _{GD}	$V_D=V_{DRM}$ R _L =3.3kΩ R _{GK} = 1 KΩ	Tj= 125°C	MIN	0.1					٧
V _{RGM}	I _{RG} =10μA	Tj= 25°C	MIN	8					٧
tgd	V _D =V _{DRM} I _{TM} = 3 x I _{T(AV)} dI _G /dt = 0.1A/µs I _G = 10mA	Tj= 25°C	TYP	0.5					μs
lн	h= 50mA R _{GK} = 1 KΩ	Tj= 25°C	MAX	5					mA
lլ	l _G =1mA R _{GK} = 1 KΩ	Tj= 25°C	MAX	6				mA	
V _{TM}	I _{TM} = 1.6A tp= 380μs	Tj= 25°C	MAX	1.93					٧
DRM	VD = VDRM RGK = 1 KΩ	Tj= 25°C	MAX	1					μΑ
IRRM	$V_R = V_{RRM}$	Tj= 125°C	MAX	100					μΑ
dV/dt	VD=67%VDRM RGK = 1 KΩ	Tj= 125°C	MIN	25	25	50	100	30	V/µs
tq	I _{TM} = 3 x I _{T(AV)} V _R =35V dI/dt=10A/μs tp=100μs dV/dt=10V/μs V _D = 67%V _{DRM} R _{GK} = 1 KΩ	Tj= 125°C	MAX			200			μs

ORDERING INFORMATION

Flg.1: Maximum average power dissipation versus average on-state current.



P (W) Tlead (℃) Rth(j-l) 0.8 -65 Rth(j-a) 0.6 -85 0.4 105 0.2 Tamb (°C) 0 L 40 60 20 80 100 120

Fig.3: Average on-state current versus lead temperature.

Fig.4: Relative variation of thermal impedance junction to ambient versus pulse duration.

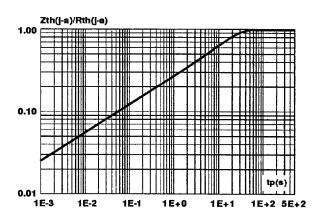
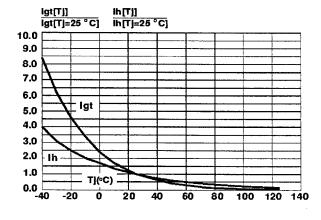
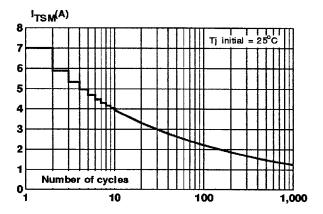
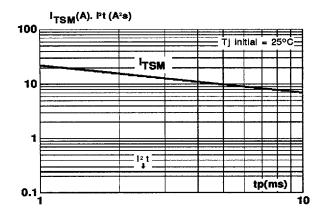




Fig.5: Relative variation of gate trigger current and holding current versus junction temperature.

Fig.6: Non repetitive surge peak on-state current versus number of cycles.



SGS-THOMSON MICROFLECTRONICS

3/5

Fig.7: Non repetitive surge peak on-state current for a sinusoidal pulse with width: $tp \le 10$ ms, and corresponding value of l^2t .

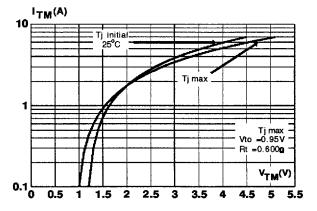
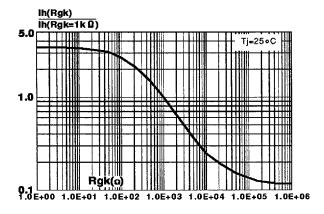
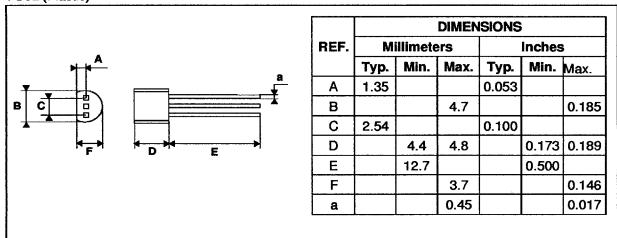
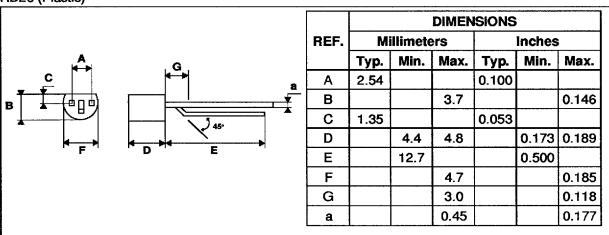




Fig.9: Relative variation of holding current versus gate-cathode resistance (typical values).

PACKAGE MECHANICAL DATA

TO92 (Plastic)



Marking: type number

Weight: 0.2 g

PACKAGE MECHANICAL DATA

RD26 (Plastic)

Marking: type number

Weight: 0.2 g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to charge without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

SGS-THOMSON MICROLLICTRONICS

5/5

: **1** 7929237 0070055 **171**