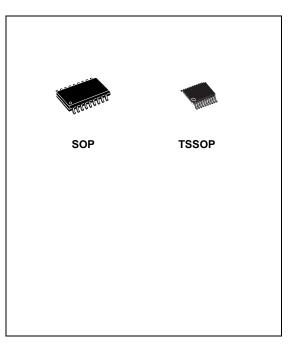


ST3222

3 TO 3.6V, LOW POWER, UP TO 400KBPS, RS-232 DRIVERS AND RECEIVERS

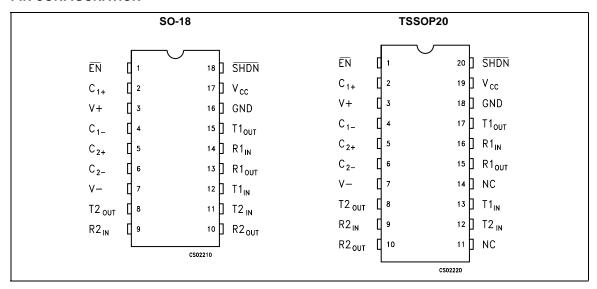

- 300µA SUPPLY CURRENT
- 250Kbps MINIMUM GUARENTEED DATA RATE
- 6V/µs MINIMUM GUARANTEED SLEW RATE
- MEET EIA/TIA-232 SPECIFICATIONS DOWN TO 3V
- AVAILABLE IN SO-18 AND TSSOP20

DESCRIPTION

The ST3222 is a 3V powered EIA/TIA-232 and V.28/V.24 communications interface with low power requirements and high data-rate capabilities. ST3222 has a proprietary low dropout transmitter output stage providing true RS-232 performance from 3 to 3.6V power supplies. The device requires only four small 0.1µF standard external capacitors for operating from 3V supply.

The ST3222 has two receivers and two drivers. The ST3222 features a $1\mu A$ shutdown mode that reduces power consumption and extends battery life in portable systems. Its receivers can remain active in shutdown mode, allowing external devices such as modems to be monitored using only $1\mu A$ supply current.

The device is guaranteed to run at data rates of 250Kbps while maintaining RS-232 output levels.


Typical applications are Notebook, Subnotebook and Palmtop Computers, Battery Powered Equipment, Hand-Held Equipment, Peripherals and Printers.

ORDERING CODES

Туре	Temperature Range	Package	Comments
ST3222CD	0 to 70 °C	SO-18 (Tube)	50parts per tube / 20tube per box
ST3222BD	-40 to 85 °C	SO-18 (Tube)	50parts per tube / 20tube per box
ST3222CDR	0 to 70 °C	SO-18 (Tape & Reel)	1000 parts per reel
ST3222BDR	-40 to 85 °C	SO-18 (Tape & Reel)	1000 parts per reel
ST3222CTR	0 to 70 °C	TSSOP20 (Tape & Reel)	2500 parts per reel
ST3222BTR	-40 to 85 °C	TSSOP20 (Tape & Reel)	2500 parts per reel

October 2002 1/9

PIN CONFIGURATION

PIN DESCRIPTION

PIN N° (SO-18)	PIN N° (TSSP20)	SYMBOL	NAME AND FUNCTION
1	1	EN	Receiver Enable Control. Drive low for normal operation. Drive high to force the receivers outputs (R_OUT) into a high-impedance state.
2	2	C ₁ +	Positive Terminal for the first Charge Pump Capacitor
3	3	V+	5.5V Generated By The Charge Pump.
4	4	C ₁ -	Negative Terminal for the first Charge Pump Capacitor
5	5	C ₂ +	Positive Terminal for the second Charge Pump Capacitor
6	6	C ₂ -	Negative Terminal for the second Charge Pump Capacitor
7	7	V-	-5.5V Generated By The Charge Pump.
8	8	T2 _{OUT}	Second Transmitter Output Voltage
9	9	R2 _{IN}	Second Receiver Input Voltage
10	10	R2 _{OUT}	Second Receiver Output Voltage
	11	NC	Not Connected
11	12	T2 _{IN}	Second Transmitter Input Voltage
12	13	T1 _{IN}	First Transmitter Input Voltage
	14	NC	Not Connected
13	15	R1 _{OUT}	First Receiver Output Voltage
14	16	R1 _{IN}	First Receiver Input Voltage
15	17	T1 _{OUT}	First Transmitter Output Voltage
16	18	GND	Ground
17	19	V _{CC}	Supply Voltage
18	20	SHDN	Active Low Shutdown Control Input. Drive Low To Shut-down Trnasmittes And Charge Pump

477

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.3 to 6	V
V+	Doubled Voltage Terminal	(V _{CC} - 0.3) to 7	V
V-	Inverted Voltage Terminal	0.3 to -7	V
V+ + V-		13	V
T _{IN}	Transmitter Input Voltage Range	-0.3 to 6	V
SHDN	Transmitter Input Voltage Range	-0.3 to 6	V
R _{IN}	Receiver Input Voltage Range	± 25	V
T _{OUT}	Transmitter Output Voltage Range	± 13.2	V
R _{OUT}	Receiver Output Voltage Range	-0.3 to (V _{CC} + 0.3)	V
t _{SHORT}	Transmitter Output Short to GND Time	Continuous	

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. V+ and V- can have a maximum magnitude of +7V, but their absolute addition can not exceed 13 V.

ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 3.6V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SUPPLY}	V _{CC} Power Supply Current	No Load $V_{CC} = 3.3V$ $T_A = 25$ °C		0.3	1	mA
		SHDN=V _{CC}				
I _{SHDN}	SHUTDOWN Supply	No Load $V_{CC} = 3.3V$ $T_A = 25$ °C		1	10	μΑ
	Current	SHDN=V _{CC}				

LOGIC INPUT ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 3.6V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	ol Parameter Test Conditions		Min.	Тур.	Max.	Unit
V _{IL}	Input Logic Threshold Low	T-IN, EN, SHDN (Note 1)			0.8	V
V _{IH}	Input Logic Threshold High	V _{CC} = 3.3V	2			V
V _{HYS}	Transmitter Input Histeresys			0.5		V
I _{IL}	Input Leakage Current	T-IN, EN, SHDN		± 0.01	± 1	μΑ

Note 1: Transmitter input hysteresis is typically 250mV

TRANSMITTER ELECTRICAL CHARACTERISTICS

 $(C_1$ - C_4 = 0.1µF V_{CC} = 3V to 3.6V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

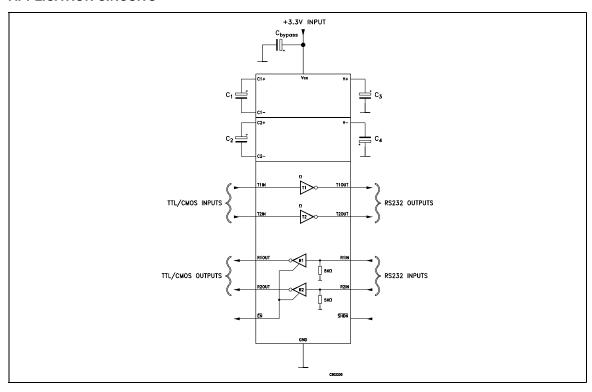
Symbol	Parameter	Test Condit	Min.	Тур.	Max.	Unit	
V _{TOUT}	Output Voltage Swing	All Transmitter outputs are loaded with $3K\Omega$ to GND		± 5	± 5.4		V
R _{TOUT}	Transmitter Output Resistance	$V_{CC} = V + = V - = 0V$	$V_{OUT} = \pm 2V$	300	10M		Ω
I _{TSC}	Output Short Circuit Current					± 60	mA
I _{TOL}	Output Leakage Current	V _{CC} = 0V or 3V to 3.6V Transmitters Disable	$V_{OUT} = \pm 12V$			± 25	μΑ

RECEIVER ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F V_{CC} = 3V to 3.6V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{OL}	Output Leakage Current	R-OUT, EN = V _{CC} , Receiver Disabled		± 0.05	± 10	μΑ
V _{RIN}	Receiver Input Voltage Operating Range		-25		25	V
V _{RIL}	Input Threshold Low	$T_A = 25^{\circ}C$ $V_{CC} = 3.3V$	0.6	1.2		V
V _{RIH}	Input Threshold High	$T_A = 25$ °C $V_{CC} = 3.3V$		1.5	2.4	V
V _{RIHYS}	Input Hysteresis			0.5		V
R _{RIN}	Input Resistance	T _A = 25°C	3	5	7	ΚΩ
V _{ROL}	TTL/CMOS Output Voltage Low	I _{OUT} = 1.6mA			0.4	V
V _{ROH}	TTL/CMOS Output Voltage High	I _{OUT} = -1mA	V _{CC} -0.6	V _{CC} -0.1		V

TIMING CHARACTERISTICS

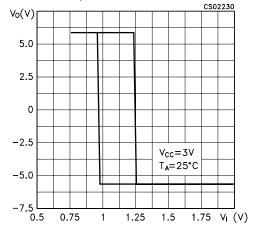

 $(C_1$ - C_4 = 0.1 μ F, V_{CC} = 3V to 3.6V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
D _R	Data Transfer Rate	$R_L = 3K\Omega$ $C_{L2} = 1000pF$ one trasmitter switching	240	400		Kbps
t _{PHLR} t _{PLHR}	Propagation Delay Input to Output	R_{XIN} to R_{XOUT} $C_L = 150pF$		0.2		μs
t _{PHLT} - t _{THL}	Transmitter Propagation Delay Difference	(Note 1)		100		ns
t _{OER}	Receiver Output Enable Time	Normal Operation		200		ns
t _{ODR}	Receiver Output Disable Time	Normal Operation		200		ns
t _{PHLR} - t _{THR}	Receiver Propagation Delay Difference			50		ns
S _{RT}	Trnasition Slew Rate	$T_A = 25^{\circ}C$ $R_L = 3K\Omega$ to $7K\Omega$ $V_{CC} = 3.3V$				
		measured from +3V to -3V or -3V to +3V $C_L = 150 pF$ to $1000 pF$ $C_L = 150 pF$ to $2500 pF$	6 4		30 30	V/μs V/μs

Transmitter Skew is measured at the transmitter zero cross points

A

APPLICATION CIRCUITS



CAPACITANCE VALUE (μF)

C1	C2.	C3	C4	Cbypass
0.1	0.1	0.1	0.1	0.1

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified $T_i = 25$ °C)

Figure 1 : Driver Voltage Transfer Characteristics for Trasmitter Inputs

Figure 2 : Driver Voltage Transfer Characteristics for Receiver Inputs

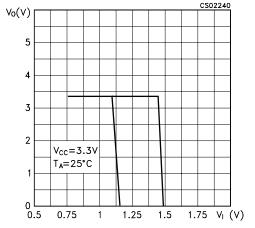
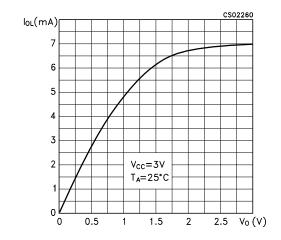
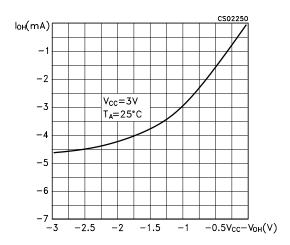
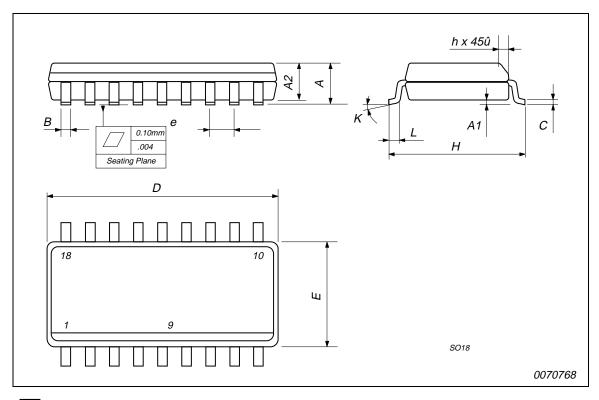
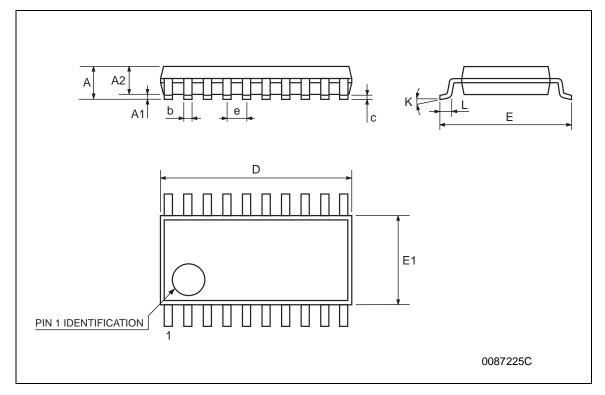


Figure 3: Output Current vs Output Low Voltage


Figure 4 : Output Current vs Output High Voltage

6/9


SO-18 MECHANICAL DATA

DIM.		mm.		inch		
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	2.35		2.65	0.092		0.104
A1	0.1		0.3	0.004		0.012
A2			2.55			0.100
В	0.33		0.51	0.013		0.020
С	0.23		0.32	0.009		0.012
D	11.35		11.75	0.447		0.462
E	7.4		7.6	0.291		0.299
е		1.27			0.050	
Н	10.00		10.65	0.393		0.419
h	0.25		0.75	0.010		0.029
k	8		° (r	max.)		
L	0.4		1.27	0.016		0.050

TSSOP20 MECHANICAL DATA

DIM.		mm.			inch			
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0079		
D	6.4	6.5	6.6	0.252	0.256	0.260		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

8/9

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

9/9