ADJUSTABLE INVERTING NEGATIVE OUTPUT CURRENT MODE PWM REGULATORS

- 2.7VTO 11V INPUT TO ADJUSTABLE NEGATIVE OUTPUT CONVERSION
- 1W GUARANTEED OUTPUT POWER ($\mathrm{V}_{\text {in }}>4.5 \mathrm{~V}, \mathrm{~T} \leq 70^{\circ} \mathrm{C}$)
- 68\% TYP. EFFICENCY AT6V
- VERY LOW QUIESCENT CURRENT: 1.2mA IN ON MODE $10 \mu \mathrm{~A}$ IN SHUT DOWN MODE
- SOFT START
- VERY LOW NOISE OUTPUT
- 160KHz FIXED FREQUENCY OSCILLATOR
- MIXED BIPOLAR-CMOS TECHNOLOGY

DESCRIPTION

The ST755 is an adjustable inverting switch-mode DC-DC rergulator with internal Power MOSFET that generaters an adjustable negative output from a voltage input of 2.7 V to 11 V , output current guaranteed at 200 mA (for

$V_{\text {in }}>4.5 \mathrm{~V}$, Vout $=-5 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 70^{\circ} \mathrm{C}$) and 275 mA (typical value at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {out }}=-5 \mathrm{~V}$).
A logic controlled shut down pin that interfaces directly with microprocessor reduces supply current to only $10 \mu \mathrm{~A}$. Input to Output differential voltage is limited to $\mathrm{V}_{\text {in }}+\mid \mathrm{V}_{\text {out }}<12.7 \mathrm{~V}$. No load supply current is 1.2 mA .

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	DC Input Voltage to GND	-0.3 to 12	V
SHDN	Shutdown Voltage	-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
	Other Input Voltage	-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
ILX	Peak Switch Current	2	A
Ptot	Power Dissipation (at $70^{\circ} \mathrm{C}$) (for DIP-8) (for SO-8)	$\begin{aligned} & 725 \\ & 170 \end{aligned}$	mW
Top	Operating Ambient Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Rating are those values beyond which damage to the device may occur.
Functional operation under these condition is not implied.

CONNECTION DIAGRAM AND (top view)

PIN CONNECTIONS

Pin No	Symbol	Name and Function
1	SHDN	SHUT-DOWN Control (VCC = On, GND=Shutdown)
2	V $_{\text {ref }}$	Reference Output Voltage (1.25V)
3	SS	Soft Start
4	CC	Compensation Input
5	V $_{\text {out }}$	Negative Output Voltage
6	GND	Ground
7	LX	Switch Output
8	VCC	Positive Supply-Voltage Input

ORDERING NUMBERS

Type	DIP-8	SO-8 (Tube)	SO-8 (T\&R)
ST755	ST755CN	ST755CD	ST755CD-TR

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=-5.25$ to -4.75 V , $\mathrm{I}_{\text {load }}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{a}}=\mathrm{T}_{\min }$ to $\mathrm{T}_{\max }$ unless otherwise specified. Typical Value are referred at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {IN }}$	Input Voltage		2.7		11	V
V 。	Output Voltage	$\mathrm{I}_{0}=0 \mathrm{~mA}$ to $200 \mathrm{~mA} \mathrm{~V}_{\mathrm{CC}}=4.5$ to 6.2 V	-5.25	-5	-4.75	V
I_{0}	Output Current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=4.5 \text { to } 6.2 \mathrm{~V} & \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \text { to } 6.2 \mathrm{~V} & \mathrm{~T}_{\mathrm{a}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V} & \mathrm{~V}_{\text {out }}=-5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} & \mathrm{~V}_{\text {out }}=-5 \mathrm{~V} \end{array}$	$\begin{aligned} & 200 \\ & 175 \end{aligned}$	$\begin{aligned} & 275 \\ & \\ & 175 \\ & 125 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Isupply	Supply Current (Including Switching Current)	No Load, $\mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\text {cc }}$		1.2	3.5	mA
loff	Standby Current	No Load, $\quad \mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$		10	100	$\mu \mathrm{A}$
Isc	Short Circuit Current			1.2		A
$\Delta \mathrm{V}_{0}$	Line Regulation	$\mathrm{V}_{\mathrm{CC}}=4$ to 6.2 V		0.1		\%/V
$\Delta \mathrm{V}_{\text {o }}$	Load Regulation	$\mathrm{l}_{0}=0 \mathrm{~mA}$ to 200 mA		0.003		\%/mA
$\mathrm{V}_{\text {REF }}$	Reference Voltage	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1.18	1.25	1.32	V
$\Delta \mathrm{V}_{\text {REF }}$	Reference Dritft	$\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		50		ppm $/{ }^{\circ} \mathrm{C}$
Rdson	LX On Resistance			0.7		Ω
ILeak	LX Leakage Current	$V_{D S}=10 \mathrm{~V}$		1		$\mu \mathrm{A}$
IsH	Shutdown Pin Current				1	$\mu \mathrm{A}$
V_{il}	Shutdown Input Low Threshold				0.25	V
$\mathrm{V}_{\text {ih }}$	Shutdown Input High Threshold		2			V
f_{0}	Oscillator Frequency			160		KHz
v	Power Efficency	$\mathrm{I}_{0}=100 \mathrm{~mA}$		68		\%
CC	Compensation Pin Impedance			7.5		K Ω

Do not overload or short the Output to Ground. If the above conditions are observerd, the device may be damaged.

APPLICATION INFORMATION

The ST755 is an IC developed for voltage conversion from an input voltage ranging from +2.4 V to 11 V to a regulated adjustable negative output limited by $\left|\mathrm{V}_{\text {out }}\right| \leq 12.7 \mathrm{~V}-\mathrm{V}_{\text {IN }}$. The circuit adopts a current-mode PWM control scheme to achieve good efficiency, high stability and low noise performance. The figure in the first page shown the detailed block diagram of the device. ST755 is realized in a BCD technology in order to achieve high temperature stability, the best REFERENCE precision, a very low quiescent current and jitter free operations. The final stage is built around a $0.7 \Omega-2 \mathrm{~A}$ P-Channel Power MOS. A fraction of the output current is splitted out for current detection. Internal clock frequency is fixed to 160 KHz . Error amplifier drives the

PWM comparator in order to keep OV on the CC input. So R_{3} and R_{4} resistors are calculated by the following formulae $R_{4}=\left(\left|V_{\text {out }}\right| / V_{\text {ref }}\right)^{*} R_{3}$ (see fig 1). For R_{3} can be choosen any value between $2 \mathrm{~K} \Omega$ and $20 \mathrm{~K} \Omega$. Soft-Start (SS) input is a voltage dependent-output current limit (see figure 9, Switch Current Limit vs. SS Input Voltage). SS pin is internally pulled to $\mathrm{V}_{\text {ref }}$ through a $1.2 \mathrm{M} \Omega$ resistor. Applying an appropiate capacitor at SS input is possible to obtain a soft-start current limitation during power up. Forcing Soft-Start (SS) input to a lower voltage through a resistive voltage driver (R_{1} and R_{2}), the maximum $L X$ curent limit can be lowered according the diagram showed in figure 9. When SHDN input is low, the total current consumption is reduced to $10 \mu \mathrm{~A}$.

APPLICATION CIRCUIT

To achieve the best performances from switching power supply topology, particular care to layout drawing is needed, in order to minimize EMI and obtain low noise, jitter free operation moreover, it ensures the full device functionality. Layout design proposed on demoboard (see picture 2) helps to lower the developing time.

Wire lengths must be minimized, filter and by-pass capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} must be low ESR type, placed as close possible to the integrated circuit. The $10 \mu \mathrm{H}$ inductor must be chosen built on a core, taking care that saturation current should be higher than the peak LX switch current. See the PEAK INDUCTOR CURRENT vs. LOAD CURRENT graph (figure 6)

Figure 1: TYPICAL APPLICATION CIRCUIT

(*) R1 and R2 can be omitted for lout<200mA.
(**) C6: Very low noise but poor transient and load response speed.
(***) C3 (alternative to C6): faster transient and load response.

Figure 2: Printed Demoboard

	$\Gamma \quad\lrcorner \bar{n}$	Symbol	Pin
		V Cc	1
		Vout	2
	\square	SHDN	3
		GND	4
	[1]		

Component Values

Capacitor	Value	Unit	Resistor	Value	Unit
C 1	47	$\mu \mathrm{~F}$	R 1	130	$\mathrm{~K} \Omega$
C 2	100	$\mu \mathrm{~F}$	R 2	300	$\mathrm{~K} \Omega$
C 3	82	pF	R 3	10	$\mathrm{~K} \Omega$
C 4	1	$\mu \mathrm{~F}$	R 4	40.7	$\mathrm{~K} \Omega$
C 5	10	$\mu \mathrm{~F}$	R 5	10	$\mathrm{~K} \Omega$
C 6	47	pF			

TYPICAL OPERATING CHARACTERISTICS
Figure 3: Load Current vs Supply Voltage

Figure 5: Efficency vs Load Current

Figure 7: Switch ON Resistance vs Supply Voltage

Figure 4: Load Current vs Supply Voltage

Figure 6: Peak InductorCurrent vs Load Current

Figure 8: Oscillator Frequency vs Temperature \& Supply Voltage

TYPICAL OPERATING CHARACTERISTICS (continued)

Figure 9: Switch Current Limit vs Soft Start Voltage

Figure 10: Reference Voltage vs temperature

Figure 11: Soft Start Delay Time

Plastic DIP-8 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A		3.3			0.130	
a1	0.7			0.028		
B	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
E		2.54			0.346	
e		7.62			0.100	
e3		7.62			0.300	
e4			7.1			0.280
F			4.8			0.189
I						0.130
L						
Z	0.44					0.063

SO-8 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
C	0.25		0.5	0.010		0.019
c1	45 (typ.)					
D	4.8		5.0	0.188		0.196
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
M			0.6			0.023
S	8 (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved

 STMicroelectronics GROUP OF COMPANIESAustralia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

