

April 1988 Revised August 1999

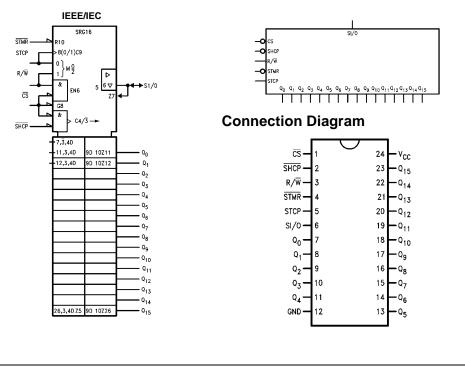
74F673A

16-Bit Serial-In, Serial/Parallel-Out Shift Register

General Description

The 74F673A contains a 16-bit serial-in, serial-out shift register and a 16-bit Parallel-Out storage register. A single pin serves either as an input for serial entry or as a 3-STATE serial output. In the Serial-Out mode, the data recirculates in the shift register. By means of a separate clock, the contents of the shift register are transferred to the storage register for parallel outputting. The contents of the storage register can also be parallel loaded back into the shift register. A HIGH signal on the Chip Select input prevents both shifting and parallel transfer. The storage register may be cleared via STMR.

Features


- Serial-to-parallel converter
- 16-bit serial I/O shift register
- 16-bit parallel-out storage register
- Recirculating serial shifting
- Recirculating parallel transfer
- Common serial data I/O pin
- Slim 24 lead package

Ordering Code:

Order Number	Package Number	Package Description
74F673ASC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F673APC	N24A	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.600 Wide
74F673ASPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

© 1999 Fairchild Semiconductor Corporation

DS009585

www.fairchildsemi.com

Unit Loading/Fan Out

Pin Names	Decerinties	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
CS	Chip Select Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA	
SHCP	Shift Clock Pulse Input (Active Falling Edge)	1.0/1.0	20 μA/–0.6 mA	
STMR	Store Master Reset Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA	
STCP	Store Clock Pulse Input	1.0/1.0	20 μA/–0.6 mA	
R/W	Read/Write Input	1.0/1.0	20 μA/–0.6 mA	
SI/O	Serial Data Input or	3.5/1.0	70 μA/–0.6 mA	
	3-STATE Serial Output	150/40	−3 mA/24 mA	
Q ₀ –Q ₁₅	Parallel Data Outputs	50/33.3	−1 mA/20 mA	

Functional Description

The 16-bit shift register operates in one of four modes, as indicated in the Shift Register Operations Table. A HIGH signal on the Chip Select (CS) input prevents clocking and forces the Serial Input/Output (SI/O) 3-STATE buffer into the high impedance state. During serial shift-out operations, the SI/O buffer is active (i.e., enabled) and the output data is also recirculated back into the shift register. When

parallel loading the shift register from the storage register, serial shifting is inhibited.

The storage register has an asynchronous master reset (STMR) input that overrides all other inputs and forces the $\mathrm{Q}_0\text{--}\mathrm{Q}_{15}$ outputs LOW. The storage register is in the Hold mode when either $\overline{\text{CS}}$ or the Read/Write (R/W) input is HIGH. With CS and R/W both LOW, the storage register is parallel loaded from the shift register.

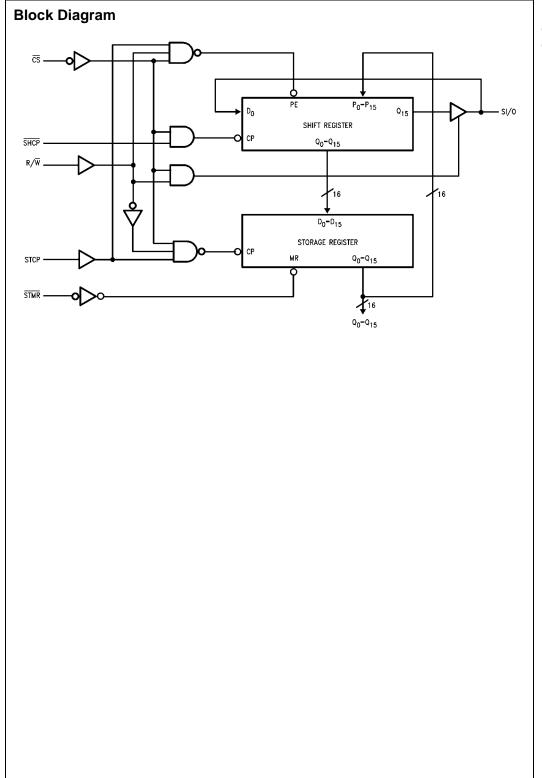
Shift Register Operations Table

	Control Inputs				Operating Mode
cs	R/W	SHCP	STCP	Status	Operating Mode
Н	Х	Х	Х	High Z	Hold
L	L		Х	Data In	Serial Load
L	Н	7	L	Data Out	Serial Output
					with Recirculation
L	Н	~	Н	Active	Parallel Load;
					No Shifting

H = HIGH Voltage Level

Storage Register Operations Table

Control Inputs			Operating	
STMR	cs	R/W	STCP	Mode
L	Х	Х	Х	Reset; Outputs LOW
Н	Н	Х	Х	Hold
Н	Х	Н	Х	Hold
Н	L	L	~	Parallel Load


H = HIGH Voltage Level

L = LOW Voltage Level

L = LOW Voltage Level

X = Immaterial

⁼ LOW-to-HIGH Transition

Absolute Maximum Ratings(Note 1)

-65°C to +150°C

-30 mA to +5.0 mA

-55°C to +125°C Ambient Temperature under Bias Junction Temperature under Bias -55°C to $+150^{\circ}\text{C}$ V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V

Input Current (Note 2) Voltage Applied to Output

Storage Temperature

in HIGH State (with $V_{CC} = 0V$) Standard Output -0.5V to V_{CC} 3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

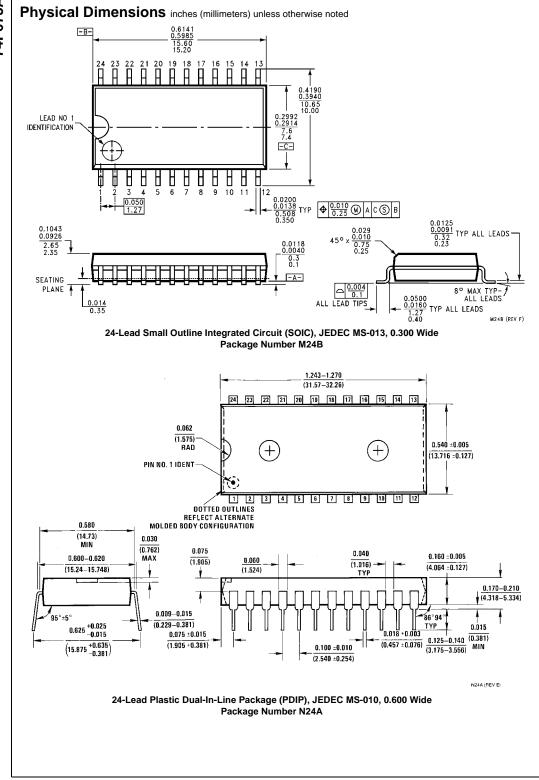
Recommended Operating Conditions

Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

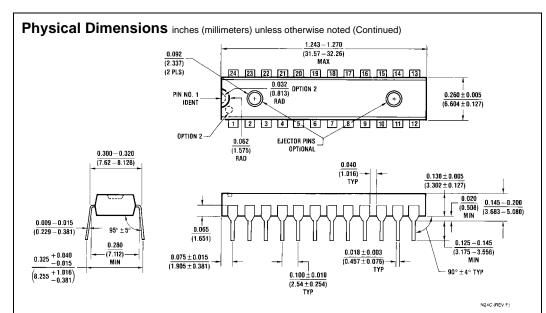
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Volta	age			-1.2	V	Min	I _{IN} = -18 mA (Non I/O pins)
V _{OH}	Output HIGH	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA } (Q_n, SI/O)$
	Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA (SI/O)}$
		5% V _{CC}	2.7			V	IVIII	$I_{OH} = -1 \text{ mA } (Q_n, SI/O)$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA (SI/O)}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	$I_{OL} = 20 \text{ mA } (Q_n)$
	Voltage	10% V _{CC}			0.5	V	IVIII	I _{OL} = 24 mA (SI/O)
I _{IH}	Input HIGH Current				20	μΑ	Max	V _{IN} = 2.7V (Non I/O pins)
I _{BVI}	Input HIGH Current				100		Max	V _{IN} = 7.0V (Non I/O pins)
	Breakdown Test			100	μΑ	IVIAX	VIN - 7.0V (NOITI/O pins)	
I _{BVIT}	Input HIGH Current				1.0	mA	Max	V _{INI} = 5.5V (SI/O)
	Breakdown Test (I/O)				1.0	ША	IVIAX	VIN = 3.3V (31/O)
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{IH} +	Output Leakage				70	μА	Max	V _{OLIT} = 2.7V (SI/O)
I_{OZH}	Current				70	μА	IVIAX	V _{OUT} = 2.7 V (31/O)
I _{IL} +	Output Leakage				-650	μА	Max	V _{OUT} = 0.5V (SI/O)
I_{OZL}	Current				-630	μА	IVIAX	V _{OUT} = 0.5V (3I/O)
Ios	Output Short-Circuit Cu	rrent	-60		-150	mA	Max	V _{OUT} = 0V
I _{CEX}	Output HIGH Leakage (Current			250	μΑ	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V
I _{CCH}	Power Supply Current			114	172	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			114	172	mA	Max	$V_O = LOW$

AC Electrical Characteristics


			$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$			to +70°C	
Symbol	Parameter	C _L = 50 pF			$V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	İ
f _{MAX}	Maximum Clock Frequency	100	130		85		MHz
t _{PLH}	Propagation Delay	3.0	8.0	10.5	2.5	12.0	ne
t _{PHL}	STCP to Q _n	3.0	10.5	13.5	2.5	15.0	ns
t _{PHL}	Propagation Delay STMR to Q _n	6.0	16.5	20.5	5.5	22.5	ns
t _{PLH}	Propagation Delay	4.0	6.5	8.5	3.5	9.5	
t _{PHL}	SHCP to SI/O	4.5	8.0	10.5	4.0	12.0	ns
t _{PZH}	Output Enable Time	5.0	8.5	11.0	4.0	12.5	
t_{PZL}	CS to SI/O	5.5	9.0	11.5	4.5	13.0	ns
t _{PHZ}	Output Disable Time	3.5	5.5	7.5	3.0	8.5	115
t_{PLZ}	CS to SI/O	3.0	4.5	6.5	2.5	7.5	
t _{PZH}	Output Enable Time	4.5	7.5	9.5	4.0	10.5	
t_{PZL}	R/W to SI/O	4.5	8.0	10.0	4.0	11.5	ns
t _{PHZ}	Output Disable Time	3.0	5.5	7.0	2.5	8.0	115
t_{PLZ}	R/W to SI/O	2.5	4.0	5.5	2.0	6.5	

AC Operating Requirements

Symbol	Parameter		$T_A = +25$ °C $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$	
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	3.5		4.0		
t _S (L)	CS or R/W to STCP	6.0		7.0		ns
t _H (H)	Hold Time, HIGH or LOW	0		0		113
t _H (L)	CS or R/W to STCP	0		0		
t _S (H)	Setup Time, HIGH or LOW	3.0		3.5		
t _S (L)	SI/O to SHCP	3.0		3.5		ns
t _H (H)	Hold Time, HIGH or LOW	3.0		3.5		115
t _H (L)	SI/O to SHCP	3.0		3.5		

www.fairchildsemi.com

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide Package Number N24C

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

7

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com