

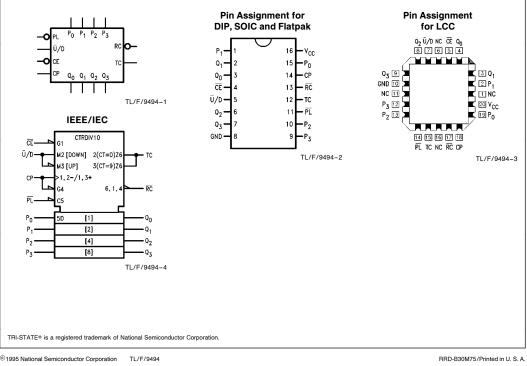
54F/74F190 Up/Down Decade Counter with Preset and Ripple Clock

General Description

Features

- High-speed—125 MHz typical count frequency
- Synchronous counting
- Asynchronous parallel load
- Cascadable

The 'F190 is a reversible BCD (8421) decade counter featuring synchronous counting and asynchronous presetting. The preset feature allows the 'F190 to be used in programmable dividers. The Count Enable input, the Terminal Count output and the Ripple Clock output make possible a variety of methods of implementing multistage counters. In the counting modes, state changes are initiated by the rising edge of the clock.


Commercial	Military	Package Number	Package Description
74F190PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F190DM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F190SC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
	54F190FM (Note 2)	W16A	16-Lead Cerpack
	54F190LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

November 1994

Unit Loading/Fan Out

		54	IF/74F
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}
CE	Count Enable Input (Active LOW)	1.0/3.0	20 µA/−1.8 mA
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/−0.6 mA
$P_0 - P_3$	Parallel Data Inputs	1.0/1.0	20 µA/−0.6 mA
PL	Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	20 µA/ -0.6 mA
Ū/D	Up/Down Count Control Input	1.0/1.0	20 µA/−0.6 mA
$Q_0 - Q_3$	Flip-Flop Outputs	50/33.3	-1 mA/20 mA
RC	Ripple Clock Output (Active LOW)	50/33.3	-1 mA/20 mA
тс	Terminal Count Output (Active HIGH)	50/33.3	—1 mA/20 mA

Functional Description

The 'F190 is a synchronous up/down BCD decade counter containing four edge-triggered flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations. It has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load (PL) input is LOW, information present on the Parallel Data inputs (P_0-P_3) is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table. A HIGH signal on the CE input inhibits counting. When \overline{CE} is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \overline{U}/D input signal, as indicated in the Mode Select Table, \overline{CE} and \overline{U}/D can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.

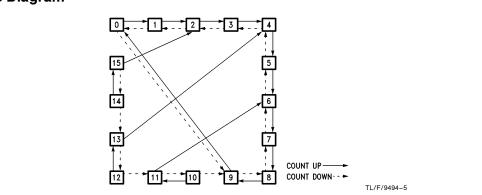
Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally LOW and goes HIGH when a circuit reaches zero in the countdown mode or reaches 9 in the count-up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until \overline{U}/D is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes. The TC signal is also used internally to enable the Ripple Clock (RC) output. The RC output is normally HIGH. When CE is LOW and TC is HIGH, the RC output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multistage counters. For a discussion and illustrations of the various methods of implementing multistage counters, please see the 'F191 data sheet.

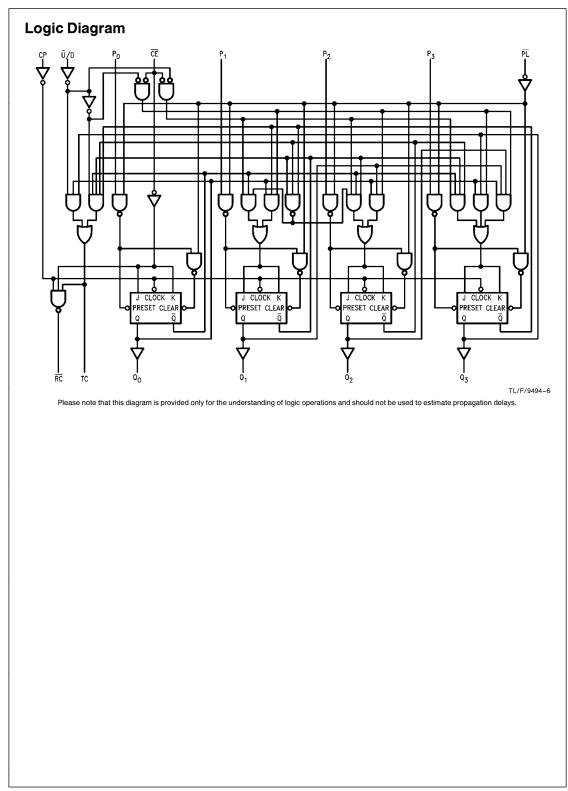
RC Truth Table

	Inputs		Output
CE	TC*	СР	RC
L	Н	T	T
н	Х	Х	н
X	L	Х	н

		Wouc		bie
	In	puts		Mode
PL	CE	Ū/D	СР	wode
н	L	L	~	Count Up
н	L	н		Count Down
L	Х	Х	Х	Preset (Asyn.)
н	н	Х	Х	No Change (Hold)

Mode Select Table


*TC is generated internally


H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

 \angle = LOW-to-HIGH Clock Transition \Box = LOW Pulse

State Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
Plastic	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE [®] Output	-0.5V to $+5.5V$
Current Applied to Output	

Recommended Operating Conditions

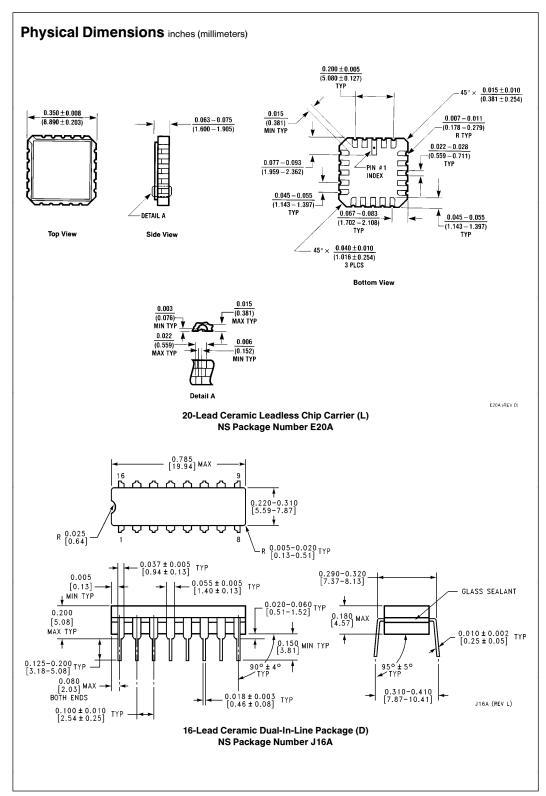
Free Air Ambient Temperature

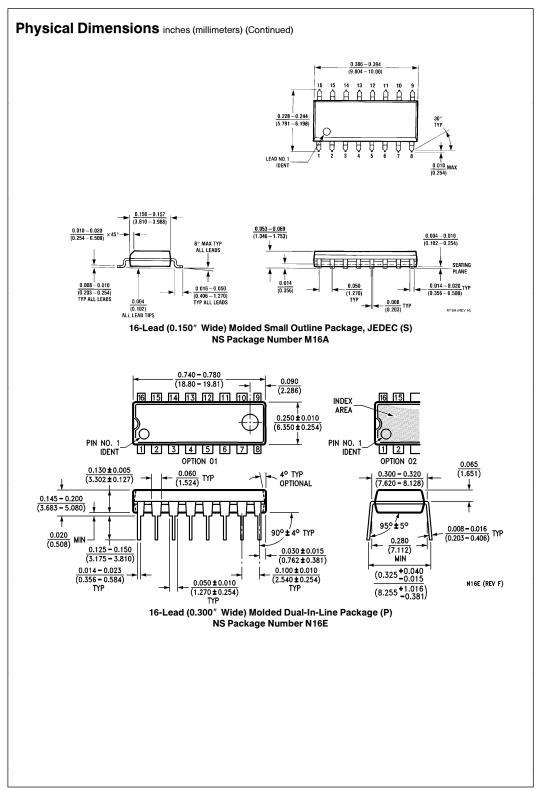
Military	-55°C to +125°C
Commercial	0°C to +70°C
Supply Voltage	
Military	+ 4.5V to + 5.5V
Commercial	+4.5V to +5.5V

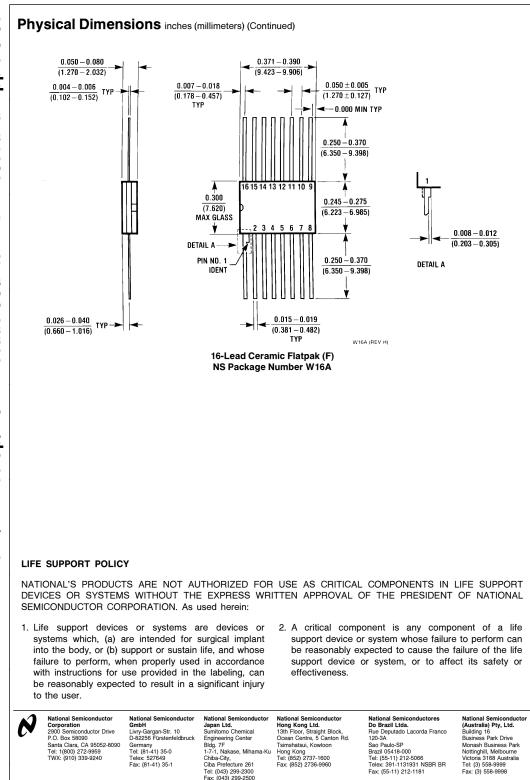
in LOW State (Max) twice the rated I_{OL} (mA) Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parame	Parameter		54F/74	F	Units	Vcc	Conditions
oymbol	T arame		Min	Тур	Max	onito	•00	oblightions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signa
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6 -1.8	mA	Max	$\label{eq:VIN} \begin{array}{l} V_{IN} = 0.5 V \text{, except} \overline{CE} \\ V_{IN} = 0.5 V \text{, } \overline{CE} \end{array}$
los	Output Short-Circuit C	Current	-60		-150	mA	Max	$V_{OUT} = 0V$
ICCL	Power Supply Curren	t		38	55	mA	Max	$V_{O} = LOW$


			74F		5	4F	74	4F	
Symbol	Parameter	v	$T_A = +25^{\circ} C_C = +5.0 C_L = 50 \text{ pr}$	V		_C = Mil 50 pF	T _A , V _{CC} C _L =		Units
		Min	Тур	Max	Min	Max	Min	Мах	
f _{max}	Maximum Clock Frequency	100	125		75		90		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to Q _n	3.0 5.0	5.5 8.5	7.5 11.0	3.0 5.0	9.5 13.5	3.0 5.0	8.5 12.0	ns
t _{PLH} t _{PHL}	Propagation Delay CP to TC	6.0 5.0	10.0 8.5	13.0 11.0	6.0 5.0	16.5 13.5	6.0 5.0	14.0 12.0	
t _{PLH} t _{PHL}	Propagation Delay CP to RC	3.0 3.0	5.5 5.0	7.5 7.0	3.0 3.0	9.5 9.0	3.0 3.0	8.5 8.0	- ns
t _{PLH} t _{PHL}	Propagation Delay \overline{CE} to \overline{RC}	3.0 3.0	5.0 5.5	7.0 7.0	3.0 3.0	9.0 9.0	3.0 3.0	8.0 8.0	113
^t PLH ^t PHL	Propagation Delay \overline{U}/D to \overline{RC}	7.0 5.5	11.0 9.0	18.0 12.0	7.0 5.5	22.0 14.0	7.0 5.5	20.0 13.0	ns
PLH PHL	Propagation Delay \overline{U}/D to \overline{TC}	4.0 4.0	7.0 6.5	10.0 10.0	4.0 4.0	13.5 12.5	4.0 4.0	11.0 11.0	
PLH PHL	Propagation Delay P _n to Q _n	3.0 6.0	4.5 10.0	7.0 13.0	3.0 6.0	9.0 16.0	3.0 6.0	8.0 14.0	ns
PLH PHL	Propagation Delay PL to Q _n	5.0 5.5	8.5 9.0	11.0 12.0	5.0 5.5	13.0 14.5	5.0 5.5	12.0 13.0	ns


AC Operating Requirements

		7	4F	54	F	7	4F	
Symbol	Parameter		+ 25°C + 5.0V	T _A , V _{CC}	; = Mil	T _A , V _{CC}	; = Com	Units
		Min	Max	Min	Max	Min	Max	
t _s (H) t _s (L)	Setup Time, HIGH or LOW P _n to PL	4.5 4.5		6.0 6.0		5.0 5.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW P _n to PL	2.0 2.0		2.0 2.0		2.0 2.0		
t _s (L)	Setup Time, LOW CE to CP	10.0		10.5		10.0		ns
t _h (L)	Hold Time, LOW CE to CP	0		0		0		- 113
t _s (H) t _s (L)	Setup Time, HIGH or LOW \overline{U}/D to CP	12.0 12.0		12.0 12.0		12.0 12.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW \overline{U}/D to CP	0 0		0		0 0		115
t _w (L)	PL Pulse Width, LOW	6.0		8.5		6.0		ns
t _w (L)	CP Pulse Width, LOW	5.0		7.0		5.0		ns
t _{rec}	Recovery Time PL to CP	6.0		7.5		6.0		ns

Temperature Range Family 74F = Commercial 54F = Military	<u>74F</u>	<u>190</u>	S	C	X Special Variations X = Devices shipped in 13" reels QB = Military grade device with environmental and burn-in
Device Type Package Code P = Plastic DIP D = Ceramic DIP F = Flatpak L = Leadless Chip Carrier (LCC) S = Small Outline SOIC JEDEC					processing shipped in tubes — Temperature Range C=Commercial (0°C to +70°C) M=Military (-55°C to +125°C)

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.