868.35 MHz One-Port SAW Resonator

VANLONG

- Ideal for 868.35 MHz Transmitters
- Very Low Insertion Loss
- Quartz Stability
- Rugged, Hermetic, Low Profile F-11 Package

SR868M35B

Absolute Maximum Rating (Ta=25°C)							
Parameter		Rating	Unit				
CW RF Power Dissipation	Р	0	dBm				
DC Voltage	V _{DC}	±30	V				
Operating Temperature Range	T _A	-10 ~ +60	°C				
Storage Temperature Range	$T_{\rm stg}$	-40 ~ +85	۵°				

Electronic Characteristics						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	f _C	NS	868.35	NS	MHz
	Tolerance from 868.35 MHz	Δf_C	-	-	± 150	KHz
Insertion Loss		IL	-	1.3	1.8	dB
Quality Factor	Unloaded Q-Value	Q _U	-	11,600	-	-
	50 Ω Loaded Q-Value	Q_L	-	1,600	-	-
Temperature Stability	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	f _O	-	fc	-	KHz
	Frequency Temperature Coefficient	FTC	-	-0.032	-	ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f_	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ
RF Equivalent RLC Model	Motional Resistance	R _M	-	16.0	23.0	Ω
	Motional Inductance	L _M	-	34.0348	-	μH
	Motional Capacitance	C_M	-	0.9880	-	fF
	Pin 1 to Pin 2 Static Capacitance	Co	1.8	2.1	2.4	pF

NS = Not Specified

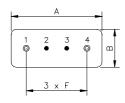
Notes:

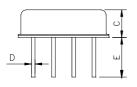
- 1. The center frequency, f_{C} , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- 3. Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c, may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- ww5.7. D This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.

- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery please contact our sales offices or e-mail to sales@vanlong.com.

Phone: +86 10 6301 4184

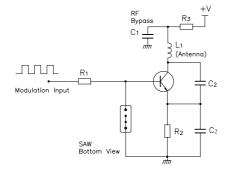
Fax: +86 10 6301 9167


Email: sales@vanlong.com

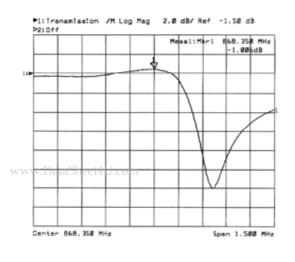

© 2004 by Vanlong Technology Co., Ltd.

868.35 MHz One-Port SAW Resonator

Package Dimensions (F-11)


Marking

SR868M35B


Ink Marking Color: Black or Blue

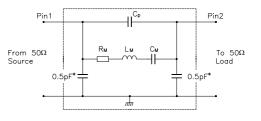

Typical Application Circuit

Low Power Transmitter Application

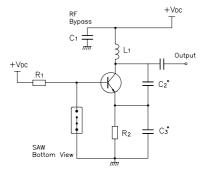
Typical Frequency Response

Fax: +86 10 6301 9167

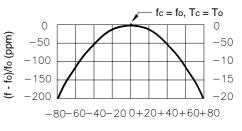
© 2004 by Vanlong Technology Co., Ltd.


Electrical Connections

Terminals	Connection	
1	Input/Output	
2	Case Ground	
3	Case Ground	
4	Output/Input	


Package Dimensions

Dimensions	Nom. (mm)	Tol. (mm)
A	11.0	±0.3
В	4.5	±0.3
С	3.2	±0.3
D	0.45	±0.1
E	5.0	±0.5
F	2.54	±0.2


Equivalent LC Model and Test Circuit

Local Oscillator Application

Temperature Characteristics

 $\Delta T = Tc - To (°C)$

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Email: sales@vanlong.com