N-CHANNEL 100V-0.038 Ω - 25A IPAK/DPAK LOW GATE CHARGE STripFETTM II POWER MOSFET

TYPE	VDSs	RDS(on)	ID $^{\prime}$
STD20NF10	100 V	$<0.045 \Omega$	$25 \mathrm{~A}\left({ }^{*}\right)$

- TYPICAL RDS(on) $=0.038 \Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- APPLICATION ORIENTED CHARACTERIZATION
- THROUGH-HOLE IPAK (TO-251) POWER PACKAGE IN TUBE (SUFFIX "-1")
- SURFACE-MOUNTING DPAK (TO-252) POWER PACKAGE IN TAPE \& REEL (SUFFIX "T4")

DESCRIPTION

This MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency, high-frequency isolated DC-DC converters for Telecom and Computer applications. It is also intended for any applications with low gate drive requirements.

APPLICATIONS

- HIGH-EFFICIENCY DC-DC CONVERTERS
. UPS AND MOTOR CONTROL

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{\text {DS }}$	Drain-source Voltage ($\mathrm{V}_{\mathrm{GS}}=0$)	100	V
$V_{\text {DGR }}$	Drain-gate Voltage ($\mathrm{RGS}^{\mathrm{G}}=20 \mathrm{k} \Omega$)	100	V
V_{GS}	Gate- source Voltage	± 20	V
$\mathrm{ID}\left({ }^{*}\right)$	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	25	A
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	21	A
$1 \mathrm{DM}(\bullet)$	Drain Current (pulsed)	100	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	85	W
	Derating Factor	0.57	W/ ${ }^{\circ} \mathrm{C}$
dv/dt (1)	Peak Diode Recovery voltage slope	20	V / ns
$\mathrm{EAS}^{\text {(2) }}$	Single Pulse Avalanche Energy	300	mJ
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-55 to 175	${ }^{\circ} \mathrm{C}$
T_{j}	Operating Junction Temperature		

(•) Pulse width limited by safe operating area.
(1) ISD $\leq 25 \mathrm{~A}$, di/dt $\leq 300 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\text {(BR) }}$ DSs, $\mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\mathrm{JMAX}}$
(*) Current Limited by Package
(2) Starting $T_{j}=25^{\circ} \mathrm{C}, \mathrm{ID}_{\mathrm{D}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=27 \mathrm{~V}$

STD20NF10

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case	Max	1.76	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb	Thermal Resistance Junction-ambient	Max $^{\circ}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{1}	Maximum Lead Temperature For Soldering Purpose	Typ	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TCASE $=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE SPECIFIED)

OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	100			V
IDSS	Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=$ Max Rating $\mathrm{V}_{\mathrm{DS}}=$ Max Rating $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			1	$\mu \mathrm{~A}$
IGSS	Gate-body Leakage Current $\left(\mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 1	$\mu \mathrm{~A}$

ON (1)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \quad \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2	3	4	V
$\mathrm{R}_{\mathrm{DS}(o n)}$	Static Drain-source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}$		0.038	0.045	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\left.\mathrm{g}_{\mathrm{fs}}{ }^{(}\right)$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}$		10		S
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0$		1200		pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			180		pF
$\mathrm{C}_{\mathrm{rss}}$	Reverse Transfer					
Capacitance						

STD20NF10

ELECTRICAL CHARACTERISTICS (continued)
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\begin{gathered} \mathrm{t}_{\mathrm{d}(\mathrm{on})} \\ \mathrm{t}_{\mathrm{r}} \end{gathered}$	Turn-on Delay Time Rise Time	$\begin{array}{\|lr} \hline \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V} & \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=4.7 \Omega & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ \text { (Resistive Load, Figure 3) } \end{array}$		$\begin{aligned} & 15 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{Q}_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{D D}=80 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A} \mathrm{VGS}=10 \mathrm{~V}$		$\begin{gathered} 40 \\ 8 \\ 15 \end{gathered}$	55	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time t_{f}	Fall Time	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V} \quad \mathrm{ID}=15 \mathrm{~A}$		45	
		$\mathrm{R}_{\mathrm{G}}=4.7 \Omega, \quad \mathrm{VGS}=10 \mathrm{~V}$		10		ns
		(Resistive Load, Figure 3)				

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\underset{\text { ISD }}{\mathrm{I}_{\text {SDM }}(\bullet)}$	Source-drain Current Source-drain Current (pulsed)				$\begin{gathered} 30 \\ 120 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
$\mathrm{V}_{\text {SD }}{ }^{*}{ }^{*}$	Forward On Voltage	$\mathrm{I}_{\mathrm{SD}}=20 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{GS}}=0$			1.3	V
$\begin{gathered} \mathrm{t}_{\mathrm{trr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{array}{ll} \text { ISD }=30 \mathrm{~A} & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{\mu s} \\ \mathrm{~V}_{\mathrm{DD}}=55 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{array}$ (see test circuit, Figure 5)		$\begin{aligned} & 110 \\ & 390 \\ & 7.5 \end{aligned}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$

${ }^{*}$)Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 1.5%.
(•)Pulse width limited by safe operating area.

Safe Operating Area

Thermal Impedance

Transconductance

Gate Charge vs Gate-source Voltage

Transfer Characteristics

Static Drain-source On Resistance

Capacitance Variations

STD20NF10

Normalized Gate Threshold Voltage vs Temperature

Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage Temperature

STD20NF10

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-251 (IPAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
B	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
B3			0.85			0.033
B5		0.3			0.012	
B6			0.95			0.037
C	0.45		0.6	0.017		0.023
C2	0.48		6.2	0.019		0.023
D	6		6.6	0.236		0.244
E	6.4		4.6	0.173		0.260
G	4.4		16.3	0.626		0.181
H	15.9		9.4	0.354		0.641
L	9		1.2	0.031		0.370
L1	0.8		1		0.031	0.039
L2		0.8				

7/9

TO-252 (DPAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
B	0.64		0.9	0.025		0.035
B2	5.2		5.4	0.204		0.212
C	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
H	9.35		10.1	0.368		0.397
L2		0.8			0.031	
L4	0.6		1	0.023		0.039

STD20NF10

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2002 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

