HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED

APPLICATIONS

- ELECTRONIC BALLASTS FOR

FLUORESCENT LIGHTING (277 V HALF BRIDGE AND 120 V PUSH-PULL TOPOLOGIES)

DESCRIPTION
The BUL1203E is a new device manufactured using Diffused Collector technology to enhance switching speeds and tight $h_{F E}$ range while maintaining a wide RBSOA.
Thanks to his structure it has an intrinsic ruggedness which enables the transistor to withstand a high collector current level during Breakdown condition, without using the transil protection usually necessary in typical converters for lamp ballast.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CBO}}$	Collector-BaseVoltage $\left(\mathrm{I}_{\mathrm{E}}=0\right)$	1200	V
$\mathrm{~V}_{\mathrm{CES}}$	Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	1200	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	550	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	9	V
I_{C}	Collector Current	5	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	8	A
I_{B}	Base Current	2	A
I_{BM}	Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	4	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	100	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$\mathrm{R}_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	1.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
Ices	Collector Cut-off Current (VBE $=0$)	$\mathrm{V}_{\text {CE }}=1200 \mathrm{~V}$				100	$\mu \mathrm{A}$
Iceo	Collector Cut-off Current ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\mathrm{CE}}=550 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CEO }}$ (sus)*	Collector-Emitter Sustaining Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	$\mathrm{L}=25 \mathrm{mH}$	550			V
Vebo	Emitter-Base Voltage $\left(I_{C}=0\right)$	$\mathrm{IE}_{\mathrm{E}}=10 \mathrm{~mA}$		9			V
$V_{\text {CE(sat)* }}$	Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{IC}=1 \mathrm{~A} \\ & \mathrm{IC}=2 \mathrm{~A} \\ & \mathrm{IC}=3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.7 \\ & 1.5 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
$\mathrm{V}_{\mathrm{BE}(\mathrm{sat})}{ }^{*}$	Base-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{IC}=2 \mathrm{~A} \\ & \mathrm{IC}=3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{h}_{\text {FE* }}$	DC Current Gain	$\begin{aligned} & \mathrm{I} \mathrm{C}=1 \mathrm{~mA} \\ & \mathrm{I}=10 \mathrm{~mA} \\ & \mathrm{I}=0.8 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 10 \\ 10 \\ 14 \\ 9 \end{gathered}$		$\begin{aligned} & 32 \\ & 28 \end{aligned}$	
$\begin{gathered} \mathrm{t}_{\mathrm{on}} \\ \mathrm{t}_{\mathrm{s}} \\ \mathrm{tff}^{\text {a }} \end{gathered}$	RESISTIVE LOAD Turn-on Time Storage Time Fall Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 2}=-0.8 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=150 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{~A} \\ & \mathrm{tp}=30 \mu \mathrm{~s} \\ & \text { (see figure 2) } \end{aligned}$		$\begin{aligned} & 2.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 3.0 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
$\mathrm{Ear}_{\text {a }}$	Repetitive Avalanche Energy	$\begin{aligned} & \mathrm{L}=2 \mathrm{mH} \\ & \mathrm{~V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \text { (see figure 3) } \end{aligned}$	$\begin{aligned} & C=1.8 \mathrm{nF} \\ & \mathrm{~V}_{\mathrm{BE}}=-5 \mathrm{~V} \end{aligned}$	6			mJ

* Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 1.5%

Safe Operating Area

Derating Curve

DC Current Gain

Collector-Emitter Saturation Voltage

Inductive Load Storage Time

DC Current Gain

Base-Emitter Saturation Voltage

Inductive Load Fall Time

I

$\sqrt{7 /}$

Reverse Biased Safe Operating Area

Figure 1: Inductive Load Switching Test Circuit

Figure 2: Resistive Load Switching Test Circuit

Figure 3: Energy Rating Test Circuit

BUL1203E

TO-220 MECHANICAL DATA						
DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
C	1.23		1.32	0.048		0.052
D	2.40		2.72	0.094		0.107
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.202
G1	2.40		2.70	0.094		0.106
H2	10.00		10.40	0.394		0.409
L2		16.40			0.645	
L4	13.00		14.00	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.20		6.60	0.244		0.260
L9	3.50		3.93	0.137		0.154
M		2.60			0.102	
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.
All other names are the property of their respective owners.
© 2003 STMicroelectronics - All Rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

