
2SC1590 Silicon NPN Transistor RF Power Output

www.DataSheet4U.com

The 2SC1590 is a silicon NPN epitaxial planer type transistor designed for 136-174MHz RF power amplifiers on VHF band mobile radio applications.

Features:

- High Power Gain: $G_{pe} > = 10dB (V_{CC} = 13.5V, P_O = 6W, f = 175MHz)$
- Ability to Withstand more than 20:1 VSWR Load when Operated at: $V_{CC} = 15.2V, P_O = 6W, f = 175MHz$

Application:

• 4 to 5 Watt Output Power Amplifier Applications in VHF Band

Absolute Maximum Ratings: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Collector-Emitter Voltage ($R_{BE} = Infinity$), V_{CEO}	17V
Collector-Base Voltage, V _{CBO}	35V
Emitter-Base Voltage, V _{EBO}	4V
Collector Current, I _C	12A
Collector Power Dissipation ($T_A = +25^{\circ}C$), P_D	1.5W
Collector Power Dissipation ($T_C = +50^{\circ}C$), P_D	12.5W
Operating Junction Temperature, T _J	+150°C
Storage Temperature Range, T _{stg}	-55° to $+150^{\circ}$ C
Thermal Resistance, Junction-to-Case, R _{thJC}	10°C/W
Thermal Resistance, Junction-to-Ambient, R _{thJA}	83°C/W

Electrical Characteristics: (T_C = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	V _{(BR)CBO}	$I_C = 10 \text{mA}, I_E = 0$	35	-	-	V
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	$I_C = 50 mA$, $R_{BE} = Infinity$	17	-	-	V
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	$I_{\rm E}=5{\rm mA},\ I_{\rm C}=0$	4	-	-	V
Collector Cutoff Current	I _{CBO}	$V_{CB} = 25V I_E = 0$	-	-	500	μΑ
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 3V, I_C = 0$	-	-	500	μΑ
DC Forward Current Gain	h _{FE}	$V_{CE} = 10V, I_{C} = 100mA, Note 1$	10	50	180	
Power Output	Po	$V_{CC} = 13.5V, P_{in} = 600mW, f =$	6	7	-	W
Collector Efficiency		175MHz	60	70	-	%

www.DataSheet4U.com

