Low-Voltage, Single and Dual Supply, 8 to 1 Multiplexer

The Intersil ISL84581 device contains precision, bidirectional, analog switches configured as an 8 to 1 multiplexer/ demultiplexer. It was designed to operate from a single +2 V to +12 V single supply or from dual $\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ supplies. The device has an inhibit pin to simultaneously open all signal paths.

ON resistance of 39Ω with a dual $\pm 5 \mathrm{~V}$ supply and 125Ω with a single +3.3 V supply. Each switch can handle rail to rail analog signals. The off-leakage current is only 0.1 nA at $+25^{\circ} \mathrm{C}$ or 2.5 nA at $+85^{\circ} \mathrm{C}$.

All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS logic compatibility when using a single 3.3 V or +5 V supply or dual $\pm 5 \mathrm{~V}$ supplies.

The ISL84581 is a single 8 to 1 multiplexer device. Table 1 summarizes the performance of the part.

TABLE 1. FEATURES AT A GLANCE

CONFIGURATION	SINGLE 8:1 MUX
$\pm 5 \mathrm{~V}$ R ${ }_{\text {ON }}$	39Ω
$\pm 5 \mathrm{~V}$ ton $/ \mathrm{t}_{\text {OFF }}$	$32 \mathrm{~ns} / 18 \mathrm{~ns}$
12 V RON	32Ω
12 V ton/toff	23ns/15ns
5 V R ON	65Ω
5 V ton/toff	$38 \mathrm{~ns} / 19 \mathrm{~ns}$
3.3 V R ON	125Ω
3.3 V ton/toff	70ns/32ns
Package	16 Ld TSSOP

Related Literature

- Technical Brief TB363 "Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)"
- Application Note AN557 "Recommended Test Procedures for Analog Switches"
- Application Note AN520 "CMOS Analog Multiplexers and Switches; Specifications and Application Considerations."
- Application Note AN1034 "Analog Switch and Multiplexer Applications"

Features

- Fully Specified at $3.3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 12 V Supplies for 10% Tolerances
- ON Resistance (R_{ON}) Max, $\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} . \ldots$. 50Ω
- ON Resistance (R_{ON}) Max, $\mathrm{V}_{\mathrm{S}}=+3 \mathrm{~V} \ldots \ldots$.
- R_{ON} Matching Between Channels, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} . \ldots<2 \Omega$
- Low Charge Injection, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$. 1pC (Max)
- Single Supply Operation. +2 V to +12 V
- Dual Supply Operation . $\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$
- Fast Switching Action $\left(\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}\right)$
- ton 38ns
- toff $19 n s$
- Guaranteed Max Off-leakage $2.5 n A$
- Guaranteed Break-Before-Make
- TTL, CMOS Compatible
- Pb-Free Plus Anneal Available (RoHS Compliant)

Applications

- Battery Powered, Handheld, and Portable Equipment
- Communications Systems
- Radios
- Telecom Infrastructure
- ADSL, VDSL Modems
- Test Equipment
- Medical Ultrasound
- Magnetic Resonance Image
- CT and PET Scanners (MRI)
- ATE
- Electrocardiograph
- Audio and Video Signal Routing
- Various Circuits
- +3V/+5V DACs and ADCs
- Sample and Hold Circuits
- Operational Amplifier Gain Switching Networks
- High Frequency Analog Switching
- High Speed Multiplexing
- Integrator Reset Circuits

Pinouts

NOTE:

1. Switches Shown for Logic "0" Inputs.

Truth Tables

ISL84581					
INH	ADDC	ADDB	ADDA	SWITCH ON	
0	0	0	0	NO0	
0	0	0	1	NO1	
0	0	1	0	NO2	
0	0	1	1	NO3	
0	1	0	0	NO4	
0	1	0	1	NO5	
0	1	1	0	NO6	
0	1	1	1	NO7	
1	x	X	x	NONE	

NOTE: Logic " 0 " $\leq 0.8 \mathrm{~V}$. Logic " 1 " $\geq 2.4 \mathrm{~V}$, with $\mathrm{V}+$ between 2.7 V and 10V. X = Don't Care.

Ordering Information

PART NO.	BRAND	TEMP RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. DWG. \#
ISL84581IVZ (See Note)	84581IVZ	-40 to +85	16 Ld TSSOP (Pb-free)	M16.173
ISL84581IVZ-T (See Note)	84581IVZ	-40 to +85	16 Ld TSSOP, Tape and Reel (Pb-free)	M16.173

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb-free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings

```
V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to15V
V+ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to15V
V- to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to 0.3V
Input Voltages
    INH, NOx, ADDx (Note 2). . . . . . . . . . . . . . -0.3 to ((V+) + 0.3V)
Output Voltages
    COM (Note 2). . . . . . . . . . . . . . . . . . . . . . -0.3 to ((V+) + 0.3V)
Continuous Current (Any Terminal) . . . . . . . . . . . . . . . . . . }\pm30\textrm{mA
Peak Current NOx, COM
    (Pulsed 1ms, 10% Duty Cycle, Max) . . . . . . . . . . . . . . . . }100\textrm{mA
ESD Rating
    HBM (Per Mil-STD-883, Method 3015.7) . . . . . . . . . . . . . >2.5kV
```


Thermal Information

Thermal Resistance (Typical, Note 3)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
16 Ld TSSOP Package	110
Maximum Junction Temperature (Plastic Package).	$+150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) (Lead Tips Only)	$+300^{\circ} \mathrm{C}$

Operating Conditions

Temperature Range
ISL84581IVZ . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
2. Signals on NOX, COM, ADDx, INH exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current ratings.
3. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board with direct die attach. See Tech Brief TB379 for details.

Electrical Specifications $\pm 5 \mathrm{~V}$ Supply Test Conditions: $\mathrm{V}_{\text {SUPPLY }}= \pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Note 4), Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	(NOTE 5) MIN	TYP	(NOTE 5) MAX	UNITS
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, V ${ }_{\text {ANALOG }}$		Full	V-	-	V+	V
ON Resistance, $\mathrm{R}_{\text {ON }}$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}$ (See Figure 5)	25	-	44	60	Ω
		Full	-	-	80	Ω
$\mathrm{R}_{\text {ON }}$ Matching Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}($ Note 6$)$	25	-	1.3	4	Ω
		Full	-	-	6	Ω
$\mathrm{R}_{\text {ON }}$ Flatness, $\mathrm{R}_{\text {FLAT(ON) }}$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}= \pm 3 \mathrm{~V}, 0 \mathrm{~V}$ (Note 7$)$	25	-	7.5	9	Ω
		Full	-	-	12	Ω
NO OFF Leakage Current, ${ }^{\text {I }}$ NO(OFF)	$\mathrm{V}_{\mathrm{S}}= \pm 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=\overline{+} 4.5 \mathrm{~V}$ (Note 8$)$	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
COM OFF Leakage Current, ${ }^{\text {I }}$ COM(OFF)	$\mathrm{V}_{\mathrm{S}}= \pm 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=\overline{+} 4.5 \mathrm{~V}$ (Note 8$)$	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
COM ON Leakage Current, $\mathrm{I}^{\text {COM }}$ (ON)	$\mathrm{V}_{\mathrm{S}}= \pm 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}= \pm 4.5 \mathrm{~V}$ (Note 8)	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
DIGITAL INPUT CHARACTERISTICS						
Input Voltage High, $\mathrm{V}_{\text {INHH }}, \mathrm{V}_{\text {ADDH }}$		Full	2.4	-	-	V
Input Voltage Low, $\mathrm{V}_{\text {INHL }}$, $\mathrm{V}_{\text {ADDL }}$		Full	-	-	0.8	V
Input Current, ${ }^{\text {ADDH, }}$, ${ }_{\text {ADDL, }} \mathrm{I}^{\text {INHH, }}$, $\mathrm{I}_{\mathrm{NHL}}$	$\mathrm{V}_{\mathrm{S}}= \pm 5.5 \mathrm{~V}, \mathrm{~V}_{\text {INH }}, \mathrm{V}_{\text {ADD }}=0 \mathrm{~V}$ or $\mathrm{V}+$	Full	-0.5	-	0.5	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS						
INHIBIT Turn-ON Time, t ON	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \text { (See Figure } 1 \text {) } \end{aligned}$	25	-	35	50	ns
		Full	-	-	60	ns

Electrical Specifications $\pm 5 \mathrm{~V}$ Supply

Test Conditions: $\mathrm{V}_{\text {SUPPLY }}= \pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Note 4), Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ}$ C)	(NOTE 5) MIN	TYP	(NOTE 5) MAX	UNITS
INHIBIT Turn-OFF Time, toff	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \text { (See Figure 1) } \end{aligned}$	25	-	22	35	ns
		Full	-	-	40	ns
Address Transition Time, ${ }_{\text {TRANS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \text { (See Figure 1) } \end{aligned}$	25	-	43	60	ns
		Full	-	-	70	ns
Break-Before-Make Time, $\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \mathrm{~V} \text { (See Figure 3) } \end{aligned}$	Full	2	7	-	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega$ (See Figure 2)	25	-	0.3	1	pC
NO OFF Capacitance, C OFF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}$ (See Figure 6)	25	-	3	-	pF
COM OFF Capacitance, CoFF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}$ (See Figure 6)	25	-	21	-	pF
COM ON Capacitance, $\mathrm{C}_{\text {COM }}(\mathrm{ON})$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}($ See Figure 6)	25	-	26	-	pF
OFF Isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{NOx}}=1 \mathrm{~V}_{\mathrm{RMS}}$ (See Figures 4 and 18)	25	-	92	-	dB
POWER SUPPLY CHARACTERISTICS						
Power Supply Range		Full	± 2	-	± 6	V
Positive Supply Current, I+	$\mathrm{V}_{\mathrm{S}}= \pm 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}, \mathrm{V}_{\mathrm{ADD}}=0 \mathrm{~V}$ or $\mathrm{V}+$, Switch On or Off	Full	-7	-	7	$\mu \mathrm{A}$
Negative Supply Current, I-		Full	-1	-	1	$\mu \mathrm{A}$

Electrical Specifications +12V Supply Test Conditions: $\mathrm{V}+=+10.8 \mathrm{~V}$ to $+13.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}(\mathrm{Note} 4)$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ}$ C)	(NOTE 5) MIN	TYP	(NOTE5) MAX	UNITS
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, V ${ }_{\text {ANALOG }}$		Full	0	-	V+	V
ON Resistance, R ${ }_{\text {ON }}$	$\mathrm{V}+=10.8 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=9 \mathrm{~V}$ (See Figure 5)	25	-	37	45	Ω
		Full	-	-	55	Ω
R_{ON} Matching Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}+=10.8 \mathrm{~V}, \mathrm{I} \mathrm{COM}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=9 \mathrm{~V}($ Note 6$)$	25	-	1.2	2	Ω
		Full	-	-	2	Ω
$\mathrm{R}_{\text {ON }}$ Flatness, $\mathrm{R}_{\mathrm{FLAT}}(\mathrm{ON})$	$\mathrm{V}+=10.8 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V}($ Note 7$)$	25	-	5	7	Ω
		Full	-	-	7	Ω
NO OFF Leakage Current, I_{NO} (OFF)	$\mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=12 \mathrm{~V}, 1 \mathrm{~V}$ (Note 8)	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
COM OFF Leakage Current, ICOM(OFF)	$\mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=12 \mathrm{~V}, 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}, 12 \mathrm{~V}$ (Note 8)	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
COM ON Leakage Current, I $\mathrm{I}_{\mathrm{COM}}(\mathrm{ON})$	$\mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}, 12 \mathrm{~V} \text {, or }$ floating (Note 8)	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
DIGITAL INPUT CHARACTERISTICS						
Input Voltage High, $\mathrm{V}_{\text {INHH }}, \mathrm{V}_{\text {ADDH }}$		Full	3.7	3.3	-	V
Input Voltage Low, $\mathrm{V}_{\text {INHL }}, \mathrm{V}_{\text {ADDL }}$		Full	-	2.7	0.8	V
Input Current, $I_{\text {ADDH, }}, I_{A D D L}, I_{I N H H}$, INHL	$\mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\text {INH }}, \mathrm{V}_{\text {ADD }}=0 \mathrm{~V}$ or $\mathrm{V}+$	Full	-0.5	-	0.5	$\mu \mathrm{A}$

Electrical Specifications +12V Supply	Test Conditions: $\mathrm{V}+=+10.8 \mathrm{~V}$ to $+13.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Note 4), Unless Otherwise Specified (Continued)					
PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	(NOTE 5) MIN	TYP	(NOTE5) MAX	UNITS
DYNAMIC CHARACTERISTICS						
INHIBIT Turn-ON Time, ton	$\begin{aligned} & \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 4(\text { See Figure 1) } \end{aligned}$	25	-	24	40	ns
		Full	-	-	45	ns
INHIBIT Turn-OFF Time, toff	$\begin{aligned} & \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 4(\text { See Figure 1) } \end{aligned}$	25	-	15	30	ns
		Full	-	-	35	ns
Address Transition Time, terans	$\begin{aligned} & \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 4 \text { (See Figure 1) } \end{aligned}$	25	-	27	50	ns
		Full	-	-	55	ns
Break-Before-Make Time Delay, t_{D}	$\begin{aligned} & \mathrm{V}+=13.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{NO}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 4 \text { (See Figure 3) } \end{aligned}$	Full	2	5	-	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega$ (See Figure 2)	25	-	2.7	5	pC
OFF Isolation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \\ & \text { (See Figure } 4 \text { and 18) } \end{aligned}$	25	-	92	-	dB
NO OFF Capacitance, C OFF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}$ (See Figure 6)	25	-	3	-	pF
COM OFF Capacitance, $\mathrm{C}_{\text {COM }}$ (OFF)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V} \\ & \text { (See Figure 6) } \end{aligned}$	25	-	21	-	pF
COM ON Capacitance, $\mathrm{C}_{\text {COM }}$ (ON)	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}$ (See Figure 6)	25	-	26	-	pF
POWER SUPPLY CHARACTERISTICS						
Power Supply Range		Full	2	-	12	V
Positive Supply Current, I+	$\mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\text {INH, }}, \mathrm{V}_{\mathrm{ADD}}=0 \mathrm{~V} \text { or } \mathrm{V}+\text {, all }$ channels on or off	Full	-7	-	7	$\mu \mathrm{A}$

Electrical Specifications 5V Supply

Test Conditions: $\mathrm{V}+=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Note 4), Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	(NOTE 5) MIN	TYP	(NOTE 5) MAX	UNITS
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, V ${ }_{\text {ANALOG }}$		Full	0	-	V+	V
ON Resistance, R_{ON}	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=3.5 \mathrm{~V}$ (See Figure 5)	25	-	81	100	Ω
		Full	-	-	120	Ω
R_{ON} Matching Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}($ Note 6$)$	25	-	2.2	4	Ω
		Full	-	-	6	Ω
$\mathrm{R}_{\text {ON }}$ Flatness, $\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3 \mathrm{~V} \\ & \text { (Note } 7 \text {) } \end{aligned}$	Full	-	11.5	-	Ω
NO OFF Leakage Current, ${ }^{\text {I }}$ NO(OFF)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \\ & \text { (Note 8) } \end{aligned}$	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
COM OFF Leakage Current, $\mathrm{I}_{\text {COM }}$ (OFF)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \\ & (\text { Note } 8) \end{aligned}$	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
COM ON Leakage Current, ${ }^{\text {I }}$ COM(ON)	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V}($ Note 8$)$	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
DIGITAL INPUT CHARACTERISTICS						
Input Voltage High, $\mathrm{V}_{\text {INHH }}$, $\mathrm{V}_{\text {ADDH }}$		Full	2.4	-	-	V

Electrical Specifications 5V Supply

Test Conditions: $\mathrm{V}+=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Note 4), Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	(NOTE 5) MIN	TYP	(NOTE 5) MAX	UNITS
Input Voltage Low, $\mathrm{V}_{\text {INHL }}$, $\mathrm{V}_{\text {ADDL }}$		Full	-	-	0.8	V
Input Current, $I_{\text {ADDH, }} I_{\text {ADDL, }} I_{I N H H}$, IINHL	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {INH }}, \mathrm{V}_{\text {ADD }}=0 \mathrm{~V}$ or $\mathrm{V}+$	Full	-0.5	-	0.5	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS						
INHIBIT Turn-ON Time, $\mathrm{t}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \mathrm{~V} \text { (See Figure 1) } \end{aligned}$	25	-	43	60	ns
		Full	-	-	70	ns
INHIBIT Turn-OFF Time, ${ }_{\text {toFF }}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \mathrm{~V}(\text { See Figure 1) } \end{aligned}$	25	-	20	35	ns
		Full	-	-	40	ns
Address Transition Time, $\mathrm{t}_{\text {TRANS }}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \mathrm{~V} \text { (See Figure 1) } \end{aligned}$	25	-	51	70	ns
		Full	-	-	85	ns
Break-Before-Make Time, $\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \mathrm{~V} \text { (See Figure 3) } \end{aligned}$	Full	2	9	-	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega$ (See Figure 2)	25	-	0.6	1.5	pC
OFF Isolation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{NOx}}=1 \mathrm{~V}_{\mathrm{RMS}} \text { (See Figures } 4 \text { and 18) } \end{aligned}$	25	-	92	-	dB
POWER SUPPLY CHARACTERISTICS						
Power Supply Range		Full	2	-	12	V
Positive Supply Current, I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}, \mathrm{~V}_{\mathrm{ADD}}=0 \mathrm{~V} \text { or } \mathrm{V}+\text {, }$ Switch On or Off	Full	-7	-	7	$\mu \mathrm{A}$
Positive Supply Current, I-		Full	-1	-	1	$\mu \mathrm{A}$

Electrical Specifications 3.3V Supply

Test Conditions: $\mathrm{V}+=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Note 4), Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	(NOTE 5) MIN	TYP	(NOTE 5) MAX	UNITS
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$		Full	0	-	V+	V
ON Resistance, R ON	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V} \\ & \text { (See Figure 5) } \end{aligned}$	25	-	135	180	Ω
		Full	-	-	200	Ω
R_{ON} Matching Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}+=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {NO }}=1.5 \mathrm{~V}$ (Note 6$)$	25	-	3.4	8	Ω
		Full	-	-	10	Ω
RON Flatness, $\mathrm{R}_{\text {FLAT(ON }}$)	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=0.5 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V} \\ & (\text { Note } 7) \end{aligned}$	Full	-	34	-	Ω
NO OFF Leakage Current, ${ }_{\text {I }}$ (OOFF)	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, 1 \mathrm{~V} \\ & \text { (Note 8) } \end{aligned}$	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
COM OFF Leakage Current, ICOM(OFF)	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, 1 \mathrm{~V} \\ & \text { (Note 8) } \end{aligned}$	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
COM ON Leakage Current, ICOM(ON)	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}($ Note 8$)$	25	-0.1	0.002	0.1	nA
		Full	-2.5	-	2.5	nA
DIGITAL INPUT CHARACTERISTICS						
Input Voltage High, $\mathrm{V}_{\text {INHH }}$, $\mathrm{V}_{\text {ADDH }}$		Full	2.4	-	-	v
Input Voltage Low, $\mathrm{V}_{\text {INHL }}, \mathrm{V}_{\text {ADDL }}$		Full	-	-	0.8	V

Electrical Specifications 3.3V Supply

Test Conditions: $\mathrm{V}+=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Note 4), Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	(NOTE 5) MIN	TYP	(NOTE 5) MAX	UNITS
Input Current, $\mathrm{I}_{\mathrm{ADDH}}, \mathrm{I}_{\mathrm{ADDL}}, \mathrm{I}_{\mathrm{INHH}}$, IINHL	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {INH }}, \mathrm{V}_{\text {ADD }}=0 \mathrm{~V}$ or $\mathrm{V}+$	Full	-0.5	-	0.5	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS						
INHIBIT Turn-ON Time, ton	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \mathrm{~V}(\text { See Figure 1) } \end{aligned}$	25	-	82	100	ns
		Full	-	-	120	ns
INHIBIT Turn-OFF Time, toff	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \mathrm{~V}(\text { See Figure 1) } \end{aligned}$	25	-	37	50	ns
		Full	-	-	60	ns
Address Transition Time, trRans	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } 3 \mathrm{~V}(\text { See Figure 1) } \end{aligned}$	25	-	96	120	ns
		Full	-	-	145	ns
Break-Before-Make Time, t $_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\text {IN }}=0 \text { to } 3 \mathrm{~V}(\text { See Figure 3) } \end{aligned}$	Full	3	13	-	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega$ (See Figure 2)	25	-	0.3	1	pC
OFF Isolation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}} \text { (See Figures } 4 \text { and } 18 \text {) } \end{aligned}$	25	-	92	-	dB
POWER SUPPLY CHARACTERISTICS						
Power Supply Range		Full	2	-	12	V

NOTES:
4. $\mathrm{V}_{\mathrm{IN}}=$ Input logic voltage to configure the device in a given state.
5. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
6. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}(\mathrm{MAX})-\mathrm{R}_{\mathrm{ON}}(\mathrm{MIN})$.
7. Flatness is defined as the difference between maximum and minimum value of on-resistance over the specified analog signal range.
8. Leakage parameter is 100% tested at high temp, and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
9. Between any two switches.

Test Circuits and Waveforms

Logic input waveform is inverted for switches that have the opposite logic sense.

FIGURE 1A. INHIBIT $t_{O N} / t_{\text {OFF }}$ MEASUREMENT POINTS

Repeat test for other switches. C_{L} includes fixture and stray capacitance.

$$
V_{\text {OUT }}=V_{(N O \text { or } N C)} \frac{R_{L}}{R_{L}+R_{(O N)}}
$$

FIGURE 1B. INHIBIT ton $^{\prime} /$ toFF $^{\text {TEST CIRCUIT }}$

Test Circuits and Waveforms (Continued)

Repeat test for other switches. C_{L} includes fixture and stray capacitance.

$$
V_{\text {OUT }}=V_{(N O \text { or } N C)} \frac{R_{L}}{R_{L}+R_{(O N)}}
$$

FIGURE 1D. ADDRESS t trans TEST CIRCUIT

Logic input waveform is inverted for switches that have the opposite logic sense.

FIGURE 1C. ADDRESS tTRANS MEASUREMENT POINTS
FIGURE 1. SWITCHING TIMES

FIGURE 2A. Q MEASUREMENT POINTS
FIGURE 2. CHARGE INJECTION

FIGURE 3A. tBBM MEASUREMENT POINTS

Repeat test for other switches.

Repeat test for other switches. C_{L} includes fixture and stray capacitance.

FIGURE 3B. $\mathrm{t}_{\mathrm{BBM}}$ TEST CIRCUIT

FIGURE 3. BREAK-BEFORE-MAKE TIME

Test Circuits and Waveforms (Continued)

FIGURE 4. OFF ISOLATION TEST CIRCUIT

FIGURE 5. RON TEST CIRCUIT

FIGURE 6. CAPACITANCE TEST CIRCUIT

Detailed Description

The ISL84581 multiplexer offers precise switching capability from bipolar $\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ supplies or a single 2 V to 12 V supply. When powered with dual $\pm 5 \mathrm{~V}$ supplies the part has low onresistance (39Ω) and high speed operation (t ON $=38 \mathrm{~ns}$, $t_{\text {OFF }}=19 \mathrm{~ns}$).

It has an inhibit pin to simultaneously open all signal paths.
The device is especially well suited for applications using $\pm 5 \mathrm{~V}$ supplies. With $\pm 5 \mathrm{~V}$ supplies the performance (R_{ON}, Leakage, Charge Injection, etc.) is best in class.

High frequency applications also benefit from the wide bandwidth and high off isolation.

Supply Sequencing And Overvoltage Protection

With any CMOS device, proper power supply sequencing is required to protect the device from excessive input currents which might permanently damage the IC. All I/O pins contain

ESD protection diodes from the pin to $\mathrm{V}+$ and to V - (see Figure 7). To prevent forward biasing these diodes, V+ and V- must be applied before any input signals, and input signal voltages must remain between $\mathrm{V}+$ and V -. If these conditions cannot be guaranteed, then one of the following two protection methods should be employed.

Logic inputs can easily be protected by adding a $1 \mathrm{k} \Omega$ resistor in series with the input (see Figure 7). The resistor limits the input current below the threshold that produces permanent damage, and the sub-microamp input current produces an insignificant voltage drop during normal operation.

This method is not applicable for the signal path inputs. Adding a series resistor to the switch input defeats the purpose of using a low R_{ON} switch, so two small signal diodes can be added in series with the supply pins to provide overvoltage protection for all pins (see Figure 7). These additional diodes limit the analog signal from 1 V below $\mathrm{V}+$ to

1 V above V -. The low leakage current performance is unaffected by this approach, but the switch resistance may increase, especially at low supply voltages.

FIGURE 7. INPUT OVERVOLTAGE PROTECTION

Power-Supply Considerations

The ISL84581 construction is typical of most CMOS analog switches, in that it has three supply pins: $\mathrm{V}+, \mathrm{V}$-, and GND. V+ and V- drive the internal CMOS switches and set their analog voltage limits, so there are no connections between the analog signal path and GND. Unlike switches with a 13V maximum supply voltage, the ISL84581 15 V maximum supply voltage provides plenty of room for the 10% tolerance of 12 V supplies ($\pm 6 \mathrm{~V}$ or 12 V single supply), as well as room for overshoot and noise spikes.

The part performs equally well when operated with bipolar or single voltage supplies. The minimum recommended supply voltage is 2 V single supply or $\pm 2 \mathrm{~V}$ dual supply. It is important to note that the input signal range, switching times, and onresistance degrade at lower supply voltages. Refer to the electrical specification tables and "Typical Performance Curves" on page 11 for details.
V+ and GND power the internal logic setting the digital switching point of the level shifters. The level shifters convert the logic levels to switched $V+$ and V - signals to drive the analog switch gate terminals.

Logic-Level Thresholds

V+ and GND power the internal logic stages, so V- has no affect on logic thresholds. This ISL84581 is TTL compatible (0.8 V and 2.4 V) over a $\mathrm{V}+$ supply range of 2.7 V to 10 V . At 12 V the V_{IH} level is about 3.3 V . This is still below the CMOS guaranteed high output minimum level of 4 V , but noise margin is reduced. For best results with a 12 V supply, use a logic family that provides a V_{OH} greater than 4 V .
The digital input stages draw supply current whenever the digital input voltage is not at one of the supply rails. Driving the digital input signals from GND to V+ with a fast transition time minimizes power dissipation.

High-Frequency Performance

In 50Ω systems, signal response is reasonably flat even past 100 MHz (see Figures 16 and 17). Figures 16 and 17 also illustrates that the frequency response is very consistent over varying analog signal levels.
An OFF switch acts like a capacitor and passes higher frequencies with less attenuation, resulting in signal feed through from a switch's input to its output. Off Isolation is the resistance to this feed through. Figure 18 details the high Off Isolation of the ISL84581. At 10 MHz , Off Isolation is about 55 dB in 50Ω systems, decreasing approximately 20 dB per decade as frequency increases. Higher load impedances decrease Off Isolation due to the voltage divider action of the switch OFF impedance and the load impedance.

Leakage Considerations

Reverse ESD protection diodes are internally connected between each analog-signal pin and both $V+$ and V-. One of these diodes conducts if any analog signal exceeds $\mathrm{V}+$ or V-.

Virtually all the analog leakage current comes from the ESD diodes to $V+$ or V-. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either $\mathrm{V}+$ or V - and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the $V+$ and V - pins constitutes the analog-signalpath leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity. There is no connection between the analog signal paths and GND.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 8. ON RESISTANCE vs SUPPLY VOLTAGE

FIGURE 10. ON RESISTANCE vs SWITCH VOLTAGE

FIGURE 9. ON RESISTANCE vs SWITCH VOLTAGE

FIGURE 11. ON RESISTANCE vs SWITCH VOLTAGE

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 12. INHIBIT TURN - ON TIME vs SUPPLY VOLTAGE

FIGURE 14. ADDRESS TRANS TIME vs SINGLE SUPPLY VOLTAGE

FIGURE 13. INHIBIT TURN - OFF TIME vs SUPPLY VOLTAGE

FIGURE 15. ADDRESS TRANS TIME vs DUAL SUPPLY VOLTAGE

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 16. FREQUENCY RESPONSE

FIGURE 18. OFF ISOLATION

FIGURE 17. FREQUENCY RESPONSE

FIGURE 19. CHARGE INJECTION vs SWITCH VOLTAGE

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP):
V-
TRANSISTOR COUNT:
193
PROCESS:
Si Gate CMOS

Thin Shrink Small Outline Plastic Packages (TSSOP)

NOTES:

1. These package dimensions are within allowable dimensions of JEDEC MO-153-AB, Issue E.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E1" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15 mm (0.006 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm (0.0027 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees)

M16.173
16 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS							
	MIN	MAX	MIN	MAX						
A	-	0.043	-	1.10	-					
A1	0.002	0.006	0.05	0.15	-					
A2	0.033	0.037	0.85	0.95	-					
b	0.0075	0.012	0.19	0.30	9					
c	0.0035	0.008	0.09	0.20	-					
D	0.193	0.201	4.90	5.10	3					
E1	0.169	0.177	4.30	4.50	4					
e	0.026	BSC	0.65	BSC	-					
E	0.246	0.256	6.25	6.50	-					
L	0.020	0.028	0.50	0.70	6					
N	16								16	7
α	0^{0}	8^{0}	0^{0}	8^{0}	-					

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

