5MHz, Single and Dual Precision Rail-toRail Input-Output (RRIO) Op Amps

The ISL28136 and ISL28236 are low-power single and dual operational amplifiers optimized for single supply operation from 2.4 V to 5.5 V , allowing operation from one lithium cell or two Ni-Cd batteries. These devices feature a gain-bandwidth product of 5 MHz and are unity-gain stable with a -3 dB bandwidth of 13 MHz .

These devices feature an Input Range Enhancement Circuit (IREC), which enables them to maintain CMRR performance for input voltages greater than the positive supply. The input signal is capable of swinging 0.25 V above the positive supply and to the negative supply with only a slight degradation of the CMRR performance. The output operation is rail-to-rail.

The parts typically draw less than 1 mA supply current per amplifier while meeting excellent DC accuracy, AC performance, noise and output drive specifications. Operation is guaranteed over $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Ordering Information

PART NUMBER (Note)	PART MARKING	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL28136FHZ-T7*	GABP	6 Ld SOT-23	MDP0038
ISL28136FHZ-T7A*	GABP	6 Ld SOT-23	MDP0038
ISL28136FBZ	28136 FBZ	8 Ld SOIC	MDP0027
ISL28136FBZ-T7*	28136 FBZ	8 Ld SOIC	MDP0027
Coming Soon ISL28236FBZ	28236 FBZ	8 Ld SOIC	MDP0027
Coming Soon ISL28236FBZ-T7*	28236 FBZ	8 Ld SOIC	MDP0027
Coming Soon ISL28236FUZ	$8236 Z$	8 Ld MSOP	MDP0043
Coming Soon ISL28236FUZ-T7*	$8236 Z$	8 Ld MSOP	MDP0043

*Please refer to TB347 for details on reel specifications.
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Features

- 5 MHz Gain bandwidth product @ $\mathrm{A} V=100$
- 13 MHz -3db unity gain bandwidth
- $900 \mu \mathrm{~A}$ typical supply current (per amplifier)
- $150 \mu \mathrm{~V}$ maximum offset voltage (8 Ld SOIC)
- 16nA typical input bias current
- Down to 2.4 V single supply voltage range
- Rail-to-rail input and output
- Enable pin (ISL28136 only)
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation
- Pb-free (RoHS compliant)

Applications

- Low-end audio
- 4 mA to 20 mA current loops
- Medical devices
- Sensor amplifiers
- ADC buffers
- DAC output amplifiers

Pinouts

ISL28236
(8 LD MSOP) TOP VIEW

Absolute Maximum Ratings $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$
Supply Voltage 5.75 V
Supply Turn-on Voltage Slew Rate 1V/us
Differential Input Current 5mA
Differential Input Voltage 0.5 V
Input Voltage $\mathrm{V}--0.5 \mathrm{~V}$ to $\mathrm{V}++0.5 \mathrm{~V}$
ESD Rating
Human Body Model 3kV
Machine Model 300 V

Thermal Information

Thermal Resistance	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
6 Ld SOT-23 Package	230
8 Ld SO Package	110
8 Ld MSOP Package	115
Ambient Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature	$+125^{\circ} \mathrm{C}$
Pb-free reflow profile http://www.intersil.com/pbfree/Pb-Fr	.see link below

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.
Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Temperature data established by characterization.

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 1) } \end{gathered}$	TYP	$\begin{array}{\|c\|} \text { MAX } \\ \text { (Note 1) } \end{array}$	UNIT
DC SPECIFICATIONS						
VOS	Input Offset Voltage	8 Ld SOIC	$\begin{aligned} & -150 \\ & -270 \end{aligned}$	± 10	$\begin{aligned} & 150 \\ & 270 \end{aligned}$	$\mu \mathrm{V}$
		6 Ld SOT-23	$\begin{aligned} & -400 \\ & -450 \end{aligned}$	± 10	$\begin{aligned} & 400 \\ & 450 \end{aligned}$	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Input Offset Voltage vs Temperature			0.4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & -10 \\ & -15 \end{aligned}$	0	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	nA
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & -10 \\ & -15 \end{aligned}$	16	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA
V_{CM}	Common-Mode Voltage Range	Guaranteed by CMRR	0		5	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 5 V	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	114		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{+}=2.4 \mathrm{~V}$ to 5.5 V	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	99		dB
Avol	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to V_{CM}	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	1770		V/mV
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CM}		140		V/mV
$\mathrm{V}_{\text {OUT }}$	Maximum Output Voltage Swing	Output low, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to V_{CM}		3	$\begin{gathered} 6 \\ 10 \end{gathered}$	mV
		Output low, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CM}		70	$\begin{gathered} 90 \\ 110 \end{gathered}$	mV
		Output high, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to V_{CM}	$\begin{aligned} & 4.99 \\ & 4.98 \end{aligned}$	4.994		V
		Output high, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CM}	$\begin{aligned} & 4.92 \\ & 4.89 \end{aligned}$	4.94		V
Is,ON	Supply Current, Enabled	Per Amp	0.8	0.9	$\begin{aligned} & 1.1 \\ & 1.4 \end{aligned}$	mA
IS, OFF	Supply Current, Disabled (ISL28136)			10	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\mu \mathrm{A}$
${ }^{10}{ }^{+}$	Short-Circuit Output Source Current	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ to V_{CM}	$\begin{aligned} & 48 \\ & 45 \end{aligned}$	56		mA

2
intersil
www Electrical Specifications $\quad \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified. Boldface limits apply over the operating temperature range, $-\mathbf{4 0 ^ { \circ }} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Temperature data established by characterization. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 1) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 1) } \end{gathered}$	UNIT
IO^{-}	Short-Circuit Output Sink Current	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ to V_{CM}	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	55		mA
V SUPPLY	Supply Operating Range	V_{+}to V_{-}	2.4		5.5	V
$\mathrm{V}_{\overline{\text { EN }}}$	EN Pin High Level (ISL28136)		2			V
$\mathrm{V}_{\overline{\mathrm{ENL}}}$	$\overline{\mathrm{EN}}$ Pin Low Level (ISL28136)				0.8	V
${ }^{\text {E ENH }}$	$\overline{\text { EN Pin Input High Current (ISL28136) }}$	$\mathrm{V}_{\text {EN }}=\mathrm{V}_{+}$		1	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$	$\mu \mathrm{A}$
${ }^{1} \overline{E N L}$	$\overline{\text { EN }}$ Pin Input Low Current (ISL28136)	$\mathrm{V}_{\overline{\mathrm{EN}}}=\mathrm{V}_{\text {- }}$		16	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	nA
AC SPECIFICATIONS						
GBW	Gain Bandwidth Product	$A_{V}=100, R_{F}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$ to V_{CM}		5		MHz
Unity Gain Bandwidth	-3dB Bandwidth	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{F}}=0 \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}}, \\ & \mathrm{~V}_{\text {OUT }}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$		13		MHz
e_{N}	Input Noise Voltage Peak-to-Peak	$\mathrm{f}=0.1 \mathrm{~Hz}$ to $10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}		0.4		$\mu \mathrm{V}_{\text {P-P }}$
	Input Noise Voltage Density	$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}		15		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{N}	Input Noise Current Density	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}		0.35		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
CMRR	Input Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=\text { to } 120 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \\ & \mathrm{V}_{\mathrm{CM}} \end{aligned}$		-90		dB
PSRR+ to 120 Hz	Power Supply Rejection Ratio (V_{+})	$\begin{aligned} & \mathrm{V}_{+}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V} \text { and } \pm 2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {SOURCE }}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$		-88		dB
PSRR- to 120 Hz	Power Supply Rejection Ratio (V.)	$\begin{aligned} & \mathrm{V}_{+}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V} \text { and } \pm 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {SOURCE }}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$		-105		dB
TRANSIENT RESPONSE						
SR	Slew Rate	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \pm 1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{f}}=50 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=50 \mathrm{k} \Omega \text { to } \\ & \mathrm{V}_{\mathrm{CM}} \end{aligned}$		± 1.9		V/ $\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$, Large Signal	Rise Time, 10% to 90%, $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & A_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{g}}=\mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$		0.6		$\mu \mathrm{s}$
	Fall Time, 90% to 10%, $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{g}}=\mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$		0.5		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f},} \mathrm{t}_{\mathrm{f}}$, Small Signal	Rise Time, 10% to 90%, $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & A_{V}=+2, V_{O U T}=10 \mathrm{~m} V_{P-P,} \\ & R_{g}=R_{f}=R_{L}=1 \mathrm{k} \Omega \text { to } V_{C M} \end{aligned}$		65		ns
	Fall Time, 90% to 10\%, V ${ }_{\text {OUT }}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{R}_{\mathrm{g}}=\mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$		62		ns
${ }_{\text {teN }}$	Enable to Output Turn-on Delay Time, 10\% EN to $10 \% \mathrm{~V}_{\text {OUT }}$ (ISL28136)	$\begin{aligned} & V_{\overline{E N}}=5 \mathrm{~V} \text { to } 0 \mathrm{~V}, A_{V}=+2, \\ & R_{g}=R_{f}=R_{L}=1 k \Omega \text { to } V_{C M} \end{aligned}$		5		$\mu \mathrm{s}$
	Enable to Output Turn-off Delay Time, 10\% EN to 10% V OUT $^{(I S L 28136)}$	$\begin{aligned} & V_{\overline{E N}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, A_{V}=+2, \\ & R_{g}=R_{f}=R_{L}=1 k \Omega \text { to } V_{C M} \end{aligned}$		0.3		$\mu \mathrm{s}$

NOTE:

1. Parts are 100% tested at $+25^{\circ} \mathrm{C}$. Temperature limits established by characterization and are not production tested.
www Typical Performance Curves $\mathrm{v}_{+}=5 \mathrm{v}, \mathrm{v}_{-}=0 \mathrm{v}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{v}, \mathrm{R}_{\mathrm{L}}=$ Open

FIGURE 1. GAIN vs FREQUENCY vs FEEDBACK RESISTOR VALUES $\mathbf{R}_{\mathbf{f}} / \mathbf{R}_{\mathbf{g}}$

FIGURE 3. GAIN vs FREQUENCY vs $\mathrm{V}_{\mathrm{OUT}}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$

FIGURE 5. GAIN vs FREQUENCY vs R_{L}

FIGURE 2. GAIN vs FREQUENCY vs $\mathrm{V}_{\mathrm{OUT}}, \mathrm{R}_{\mathrm{L}}=\mathbf{1 k}$

FIGURE 4. GAIN vs FREQUENCY vs $\mathrm{V}_{\mathrm{OUT}}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$

FIGURE 6. FREQUENCY RESPONSE vs CLOSED LOOP GAIN
www Typical Performance Curves $\mathrm{v}_{+}=5 \mathrm{~V}, \mathrm{v}_{-}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open (Continued)

FIGURE 7. GAIN vs FREQUENCY vs SUPPLY VOLTAGE

FIGURE 9. CMRR vs FREQUENCY; $\mathrm{V}_{+}=\mathbf{2 . 4 V}$ AND 5V

FIGURE 11. PSRR vs FREQUENCY, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 8. GAIN vs FREQUENCY vs C_{L}

FIGURE 10. PSRR vs FREQUENCY, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V}$

FIGURE 12. INPUT VOLTAGE NOISE DENSITY vs FREQUENCY

Typical Performance Curves $\mathrm{v}_{+}=5 \mathrm{~V}, \mathrm{v}_{-}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}$ (Continued)

FIGURE 13. INPUT CURRENT NOISE DENSITY vs FREQUENCY

FIGURE 15. LARGE SIGNAL STEP RESPONSE

FIGURE 17. ENABLE TO OUTPUT RESPONSE

FIGURE 14. INPUT VOLTAGE NOISE 0.1 Hz TO 10 Hz

FIGURE 16. SMALL SIGNAL STEP RESPONSE

FIGURE 18. INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE

Typical Performance Curves $\mathrm{v}_{+}=5 \mathrm{~V}, \mathrm{v}_{-}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}$ (Continued)

FIGURE 19. INPUT OFFSET CURRENT vs COMMON-MODE INPUT VOLTAGE

FIGURE 20. SUPPLY CURRENT ENABLED vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 22. V_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}$, SOT PACKAGE

FIGURE 21. SUPPLY CURRENT DISABLED vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 23. V_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}$, SOIC PACKAGE

Typical Performance Curves $\mathrm{v}_{+}=5 \mathrm{~V}, \mathrm{v}_{-}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}$ (Continued)

FIGURE 24. $\mathrm{V}_{\text {OS }}$ vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V}$, SOT PACKAGE

FIGURE 26. $\mathrm{I}_{\mathrm{BIAS}}{ }^{+} \mathrm{vS}$ TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 28. $\mathrm{I}_{\mathrm{BIAS}}{ }^{+}$vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{~V}$

FIGURE 25. $\mathrm{V}_{\text {OS }}$ vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V}$, SOIC PACKAGE

FIGURE 27. $\mathrm{I}_{\mathrm{BIAS}}{ }^{-}$vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 29. $\mathrm{I}_{\mathrm{BIAS}}{ }^{-}$vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V}$

Typical Performance Curves $\mathrm{v}_{+}=5 \mathrm{~V}, \mathrm{v}_{-}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}$ (Continued)

FIGURE 30. I_{OS} vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}$

FIGURE 32. CMRR vs TEMPERATURE, $\mathrm{V}_{\mathrm{CM}}=-2.5 \mathrm{~V}$ TO +2.5 V , $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 34. AVOL vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2 \mathrm{~V}$ $\mathrm{TO}+2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$

FIGURE 31. I_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{~V}$

FIGURE 33. PSRR vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{~V}$ TO $\pm 2.75 \mathrm{~V}$

FIGURE 35. AVOL vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2 \mathrm{~V}$ $\mathrm{TO}+2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$

Typical Performance Curves $\mathrm{v}_{+}=5 \mathrm{~V}, \mathrm{v}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}$ (Continued)

FIGURE 36. $\mathrm{V}_{\text {OUT }}$ HIGH vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=\mathbf{1 k}$

FIGURE 37. $\mathrm{V}_{\text {OUT }}$ LOW vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$

Pin Descriptions

$\begin{aligned} & \text { ISL28136 } \\ & \text { (6 Ld SOT-23) } \end{aligned}$	$\begin{aligned} & \text { ISL28136 } \\ & \text { (8 Ld SOIC) } \end{aligned}$	$\begin{aligned} & \text { ISL28236 } \\ & \text { (8 Ld SOIC) } \\ & \text { (8 Ld MSOP) } \end{aligned}$	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
	1, 5		NC	Not connected	
4	2	$\begin{aligned} & 2(A) \\ & 6 \text { (B) } \end{aligned}$	$\begin{aligned} & \text { IN- } \\ & \text { IN-_A } \\ & \text { IN-_B } \end{aligned}$	inverting input	
3	3	$\begin{aligned} & 3 \text { (A) } \\ & 5 \text { (B) } \end{aligned}$	$\begin{gathered} \mathrm{IN}+ \\ \mathrm{IN}+\text { _A } \\ \mathrm{IN}+_\mathrm{B} \end{gathered}$	Non-inverting input	See Circuit 1
2	4	4	V -	Negative supply	
1	6	$\begin{aligned} & 1 \text { (A) } \\ & 7 \text { (B) } \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT_A } \\ & \text { OUT_B } \end{aligned}$	Output	
6	7	8	V+	Positive supply	See Circuit 2
5	8		$\overline{\mathrm{EN}}$	Chip enable	

Applications Information

Introduction

The ISL28136 and ISL28236 are single and dual channel Bi-CMOS rail-to-rail input, output (RRIO) micropower precision operational amplifiers. The parts are designed to operate from single supply (2.4 V to 5.5 V) or dual supply ($\pm 1.2 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$). The parts have an input common mode range that extends 0.25 V above the positive rail and down to the negative supply rail. The output operation can swing within about 3 mV of the supply rails with a $100 \mathrm{k} \Omega$ load.

Rail-to-Rail Input

Many rail-to-rail input stages use two differential input pairs, a long-tail PNP (or PFET) and an NPN (or NFET). Severe penalties have to be paid for this circuit topology. As the input signal moves from one supply rail to another, the operational amplifier switches from one input pair to the other causing drastic changes in input offset voltage and an undesired change in magnitude and polarity of input offset current.

The ISL28136 and ISL28236 achieve input rail-to-rail operation without sacrificing important precision specifications and degrading distortion performance. The devices' input offset voltage exhibits a smooth behavior throughout the entire common-mode input range. The input bias current versus the common-mode voltage range gives an undistorted behavior from typically down to the negative rail to 0.25 V higher than the positive rail.

Rail-to-Rail Output

A pair of complementary bi-polar devices are used to achieve the rail-to-rail output swing. The PNP sinks current to swing the output in the negative direction. The NPN sources current to swing the output in the positive direction. The ISL28136 and ISL28236 with a $100 \mathrm{k} \Omega$ load will swing to within 3 mV of the positive supply rail and within 3 mV of the negative supply rail.

Results of Over-Driving the Output

Caution should be used when over-driving the output for long periods of time. Over-driving the output can occur in two ways. 1) The input voltage times the gain of the amplifier exceeds the supply voltage by a large value or, 2) the output current required is higher than the output stage can deliver. These conditions can result in a shift in the Input Offset Voltage (V_{OS}) as much as $1 \mu \mathrm{~V} / \mathrm{hr}$. of exposure under these conditions.

IN+ and IN- Input Protection

All input terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. They also contain back-to-back diodes across the input terminals (see "Pin Descriptions" on page 10-Circuit 1). For applications where the input differential voltage is expected to exceed 0.5 V , an
external series resistor must be used to ensure the input currents never exceed 5mA (Figure 38).

FIGURE 38. INPUT CURRENT LIMITING

Enable/Disable Feature

The ISL28136 offers an $\overline{\mathrm{EN}}$ pin that disables the device when pulled up to at least 2.0 V . In the disabled state (output in a high impedance state), the part consumes typically $10 \mu \mathrm{~A}$ at room temperature. The $\overline{\mathrm{EN}}$ pin has an internal pull-down. If left open, the $\overline{\mathrm{EN}}$ pin will pull to the negative rail and the device will be enabled by default. The $\overline{\mathrm{EN}}$ pin should never be left floating. When not used, the $\overline{\mathrm{EN}}$ pin should either be left floating or connected to the V - pin.

By disabling the part, multiple ISL28136 parts can be connected together as a MUX. In this configuration, the outputs are tied together in parallel and a channel can be selected by the $\overline{\mathrm{EN}}$ pin. The loading effects of the feedback resistors of the disabled amplifier must be considered when multiple amplifier outputs are connected together. Note that feed through from the IN+ to IN- pins occurs on any Mux Amp disabled channel where the input differential voltage exceeds 0.5 V (e.g., active channel $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$, while disabled channel $\mathrm{V}_{\mathrm{IN}}=G N D$), so the mux implementation is best suited for small signal applications. If large signals are required, use series $I N+$ resistors, or a large value R_{F}, to keep the feed through current low enough to minimize the impact on the active channel. See"Limitations of the Differential Input Protection" on page 11 for more details.

Limitations of the Differential Input Protection

If the input differential voltage is expected to exceed 0.5 V , an external current limiting resistor must be used to ensure the input current never exceeds 5 mA . For non-inverting unity gain applications, the current limiting can be via a series $\mathrm{IN}+$ resistor, or via a feedback resistor of appropriate value. For other gain configurations, the series $\mathrm{IN}+$ resistor is the best choice, unless the feedback $\left(R_{F}\right)$ and gain setting $\left(R_{G}\right)$ resistors are both sufficiently large to limit the input current to 5 mA .

Large differential input voltages can arise from several sources:

1) During open loop (comparator) operation. Used this way, the IN+ and IN- voltages don't track, so differentials arise.
2) When the amplifier is disabled but an input signal is still present. An R_{L} or R_{G} to GND keeps the IN- at GND, while the varying $\mathrm{IN}+$ signal creates a differential voltage. Mux Amp applications are similar, except that the active channel $\mathrm{V}_{\text {OUT }}$ determines the voltage on the IN - terminal.
www. 3) WAten the slew rate of the input pulse is considerably faster than the op amp's slew rate. If the $\mathrm{V}_{\text {OUT }}$ can't keep up with the $\mathrm{IN}+$ signal, a differential voltage results, and visible distortion occurs on the input and output signals. To avoid this issue, keep the input slew rate below $1.9 \mathrm{~V} / \mu \mathrm{s}$, or use appropriate current limiting resistors.
Large ($>2 \mathrm{~V}$) differential input voltages can also cause an increase in disabled I_{CC}.

Using Only One Channel

The ISL28236 is a dual op amp. If the application only requires one channel, the user must configure the unused channel to prevent it from oscillating. The unused channel will oscillate if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the negative input and ground the positive input (as shown in Figure 39).

FIGURE 39. PREVENTING OSCILLATIONS IN UNUSED CHANNELS

Current Limiting

These devices have no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device.

Power Dissipation

It is possible to exceed the $+125^{\circ} \mathrm{C}$ maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature ($\mathrm{T}_{\mathrm{JMAX}}$) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related in Equation 1:
$T_{\text {JMAX }}=T_{M A X}+\left(\theta_{J A} \times P D_{\text {MAXTOTAL }}\right)$
where:

- PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package ($\mathrm{PD}_{\mathrm{MAX}}$)
- PD $_{\text {MAX }}$ for each amplifier can be calculated using Equation 2:

$$
\begin{equation*}
P D_{\text {MAX }}=2 * V_{S} \times I_{S M A X}+\left(V_{S}-V_{\text {OUTMAX }}\right) \times \frac{V_{\text {OUTMAX }}}{R_{L}} \tag{EQ.2}
\end{equation*}
$$

where:

- $\mathrm{T}_{\mathrm{MAX}}=$ Maximum ambient temperature
- $\theta_{\mathrm{JA}}=$ Thermal resistance of the package
- $P D_{\text {MAX }}=$ Maximum power dissipation of 1 amplifier
- $\mathrm{V}_{\mathrm{S}}=$ Supply voltage (Magnitude of V_{+}and V_{-})
- $I_{\mathrm{MAX}}=$ Maximum supply current of 1 amplifier
- $V_{\text {OUTMAX }}=$ Maximum output voltage swing of the application
- $\mathrm{R}_{\mathrm{L}}=$ Load resistance

SOT-23 Package Family

MDP0038

SOT-23 PACKAGE FAMILY

SYMBOL	MILLIMETERS		TOLERANCE
	SOT23-5	SOT23-6	
A	1.45	1.45	± 0.05
A1	0.10	0.10	± 0.15
A2	1.14	1.14	± 0.05
b	0.40	0.40	± 0.06
c	0.14	0.14	Basic
D	2.90	2.90	Basic
E	2.80	2.80	Basic
E1	1.60	1.60	Basic
e	0.95	0.95	Basic
e1	1.90	1.90	± 0.10
L	0.45	0.45	Reference
L1	0.60	0.60	Reference
N	5	6	Rev. F 2/07

NOTES:

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
3. This dimension is measured at Datum Plane " H ".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Index area - Pin \#1 I.D. will be located within the indicated zone (SOT23-6 only).
6. SOT23-5 version has no center lead (shown as a dashed line).

Smalf Outline Package Family (SO)

$\Phi 0.010(10|c| A \mid B$

DETAIL X

MDP0027
SMALL OUTLINE PACKAGE FAMILY (SO)

SYMBOL	INCHES							TOLERANCE	NOTES
	SO-8	SO-14	$\begin{gathered} \text { SO16 } \\ (0.150 ") \end{gathered}$	$\begin{gathered} \text { SO16 (0.300") } \\ \text { (SOL-16) } \end{gathered}$	$\begin{gathered} \text { SO20 } \\ (\mathrm{SOL-20}) \end{gathered}$	$\begin{gathered} \text { SO24 } \\ (\mathrm{SOL}-24) \end{gathered}$	$\begin{gathered} \text { SO28 } \\ (\mathrm{SOL-28}) \end{gathered}$		
A	0.068	0.068	0.068	0.104	0.104	0.104	0.104	MAX	-
A1	0.006	0.006	0.006	0.007	0.007	0.007	0.007	± 0.003	-
A2	0.057	0.057	0.057	0.092	0.092	0.092	0.092	± 0.002	-
b	0.017	0.017	0.017	0.017	0.017	0.017	0.017	± 0.003	-
C	0.009	0.009	0.009	0.011	0.011	0.011	0.011	± 0.001	-
D	0.193	0.341	0.390	0.406	0.504	0.606	0.704	± 0.004	1, 3
E	0.236	0.236	0.236	0.406	0.406	0.406	0.406	± 0.008	-
E1	0.154	0.154	0.154	0.295	0.295	0.295	0.295	± 0.004	2, 3
e	0.050	0.050	0.050	0.050	0.050	0.050	0.050	Basic	-
L	0.025	0.025	0.025	0.030	0.030	0.030	0.030	± 0.009	-
L1	0.041	0.041	0.041	0.056	0.056	0.056	0.056	Basic	-
h	0.013	0.013	0.013	0.020	0.020	0.020	0.020	Reference	-
N	8	14	16	16	20	24	28	Reference	-

Rev. M 2/07
NOTES:

1. Plastic or metal protrusions of 0.006 " maximum per side are not included.
2. Plastic interlead protrusions of 0.010 " maximum per side are not included.
3. Dimensions "D" and "E1" are measured at Datum Plane "H".
4. Dimensioning and tolerancing per ASME Y14.5M-1994
www. Minit SO'Package Family (MSOP)

DETAIL X

MDP0043
MINI SO PACKAGE FAMILY

SYMBOL	MILLIMETERS			
	MSOP8	MSOP10	TOLERANCE	
A	1.10	1.10	Max.	-
A1	0.10	0.10	± 0.05	-
A2	0.86	0.86	± 0.09	-
b	0.33	0.23	$+0.07 /-0.08$	-
c	0.18	0.18	± 0.05	-
D	3.00	3.00	± 0.10	1,3
E	4.90	4.90	± 0.15	-
E1	3.00	3.00	± 0.10	2,3
e	0.65	0.50	Basic	-
L	0.55	0.55	± 0.15	-
L1	0.95	0.95	Basic	-
N	8	10	Reference	-

Rev. D 2/07
NOTES:

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
3. Dimensions "D" and "E1" are measured at Datum Plane "H".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

