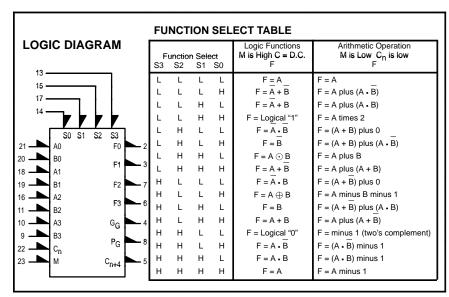
4-Bit Arithmetic Logic Unit/ Function Generator

The MC10H181 is a high–speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four–bit words. Full internal carry is incorporated for ripple through operation.

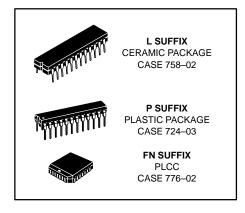
Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 through S3) as indicated in the tables of arithmetic/logic functions. Group carry propagate (PG) and carry generate (GG) are provided to allow fast operations on very long words using a second order look—ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

When used with the MC10H179, full-carry look-ahead, as a second order look-ahead block, the MC10H181 provides high-speed arithmetic operations on very long words.

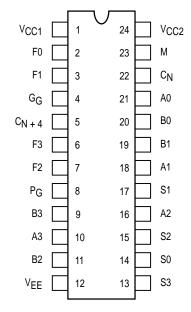
This 10H part is a functional/pinout duplication of the standard MECL 10K family part with 100% improvement in propagation delay and no increase in power supply current.


- Improved Noise Margin, 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K Compatible

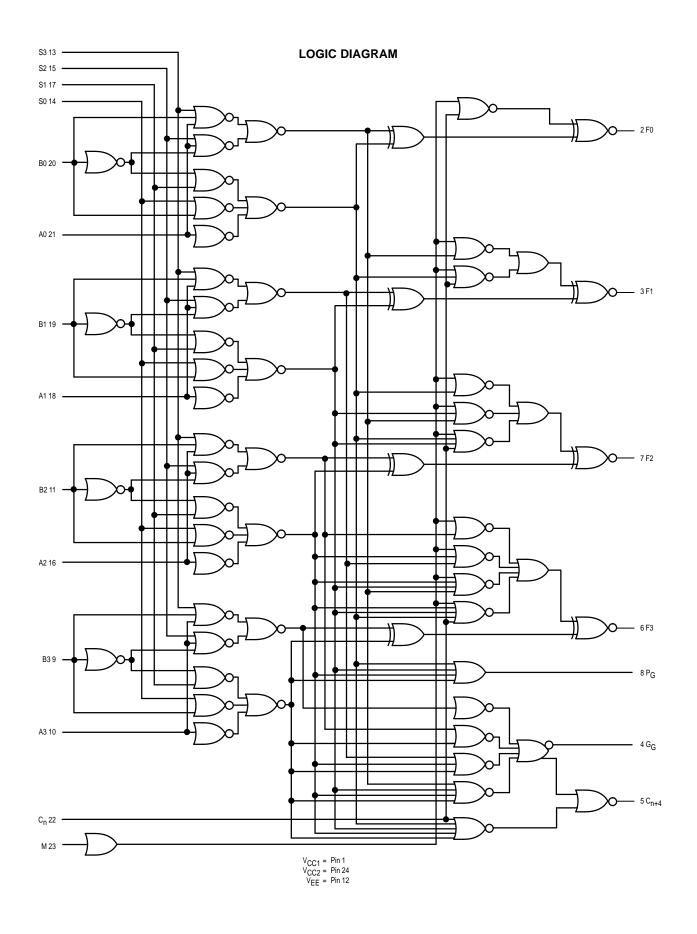
MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
Power Supply (V _{CC} = 0)	VEE	-8.0 to 0	Vdc
Input Voltage (V _{CC} = 0)	V _I	0 to V _{EE}	Vdc
Output Current — Continuous — Surge	lout	50 100	mA
Operating Temperature Range	TA	0 to +75	°C
Storage Temperature Range — Plastic — Ceramic	T _{stg}	-55 to +150 -55 to +165	°C °C

NOTE:


Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50–ohm resistor to -2.0 volts.

MC10H181



DIP PIN ASSIGNMENT

Pin assignment is for Dual–in–Line Package.
For PLCC pin assignment, see the Pin Conversion
Tables on page 6–11 of the Motorola MECL Data
Book (DL122/D).

9/96

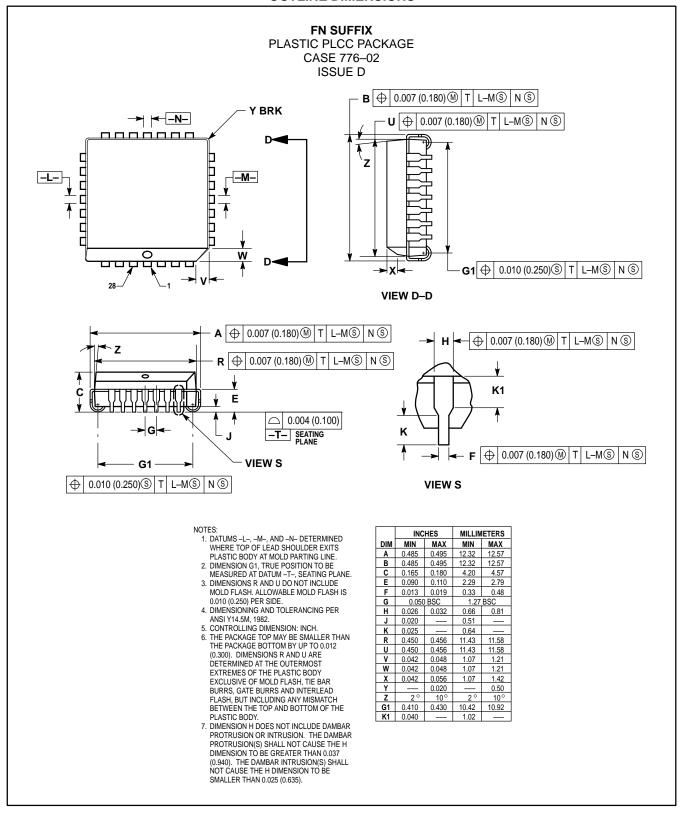
ELECTRICAL CHARACTERISTICS ($V_{EE} = -5.2 \text{ V} \pm 5.0\%$) (See Note)

		O	0	+25°		+		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Current	ΙΕ	_	159	_	145	_	159	mA
Input Current High Pin 22 Pins 14,23 Pins 13,15,17 Pins 10,16,18,21 Pins 9,11,19,20	linH	_ _ _ _	720 405 515 475 465		450 255 320 300 275		450 255 320 300 275	μА
Input Current Low Pins 9–11, 13–22	linL	0.5	_	0.5	_	0.3	_	μА
High Output Voltage	Voн	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	\vee_{IH}	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	V_{IL}	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

NOTE:

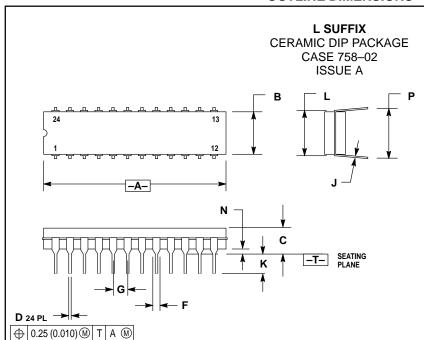
Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

AC PARAMETERS


					AC Switching Characteristics						
					0°C +25°C +		+7	5°C			
Characteristic	Symbol	Input	Output	Conditions †	Min	Max	Min	Max	Min	Max	Unit
Propagation Delay	t+ +, t	C _n	C _{n+4}	A0,A1,A2,A3	0.7	2.0	0.7	2.0	0.7	2.2	ns
Rise Time, Fall Time	t+, t-	C _n	C _{n+4}	A0,A1,A2,A3	0.6	2.0	0.6	2.0	0.7	2.2	ns
Propagation Delay	t+ +, t+ -, t- +, t	C _n	F1 F1	A0	1.0	3.0	1.0	3.0	1.2	3.3	ns
Rise Time, Fall Time Propagation Delay	t+, t- t+ +, t+ -, t- +, t	C _n A1 A1	F1 F1 F1		1.5	3.7	0.7 1.5	3.7	0.7 1.6	2.4 4.0	ns
Rise Time, Fall Time	t+, t-	A1	F1		0.7	2.0	0.7	2.0	0.7	2.2	
Propagation Delay	t+ +, t	A1	P _G	\$0,\$3	1.5	3.7	1.5	3.7	1.6	4.0	ns
Rise Time, Fall Time	t+, t-	A1	P _G	\$0,\$3	0.9	2.4	0.9	2.4	0.9	2.6	ns
Propagation Delay	t+ +, t	A1	G _G	A0,A2,A3,C _n	1.5	3.7	1.5	3.7	1.6	3.9	ns
Rise Time, Fall Time	t+, t-	A1	G _G	A0,A2,A3,C _n	0.7	2.2	0.7	2.2	0.7	2.4	ns
Propagation Delay	t+ -, t- +	A1	C _{n+4}	A0,A2,A3,C _n	1.5	3.6	1.5	3.6	1.6	3.9	ns
Rise Time, Fall Time	t+, t-	A1	C _{n+4}	A0,A2,A3,C _n	0.5	2.0	0.5	2.0	0.5	2.2	ns
Propagation Delay	t+ +, t- +	B1	F1	S3,C _n	2.0	4.5	2.0	4.5	2.1	4.8	ns
Rise Time, Fall Time	t+, t-	B1	F	S3,C _n	0.7	2.3	0.7	2.3	0.7	2.5	ns
Propagation Delay	t+ +, t	B1	P _G	S0,A1	1.5	3.8	1.5	3.8	1.6	4.0	ns
Rise Time, Fall Time	t+, t-	B1	P _G	S0,A1	0.7	2.2	0.7	2.2	0.7	2.4	ns
Propagation Delay	t+ +, t	B1	G _G	S3,C _n	1.5	3.7	1.5	3.7	1.6	4.0	ns
Rise Time, Fall Time	t+, t-	B1	G _G	S3,C _n	0.7	2.2	0.7	2.2	0.7	2.4	ns
Propagation Delay	t+ -, t- +	B1	C _{n+4}	S3,C _n	2.0	4.0	2.0	4.0	2.1	4.3	ns
Rise Time, Fall Time	t+, t-	B1	C _{n+4}	S3,C _n	0.5	2.0	0.5	2.2	0.5	2.2	ns
Propagation Delay	t+ +, t+ -	M	F1	_	1.5	4.2	1.5	4.2	1.6	4.5	ns
Rise Time, Fall Time	t+, t-	M	F1	_	0.8	2.3	0.8	2.3	0.8	2.5	ns
Propagation Delay	t+ -, t- +	S1	F1	A1,B1	1.5	4.5	1.5	4.5	1.6	4.8	ns
Rise Time, Fall Time	t+, t-	S1	F1	A1,B1	0.7	2.0	0.7	2.0	0.7	2.2	ns
Propagation Delay	t-+, t+ -	S1	P _G	A3,B3	1.5	4.0	1.5	4.0	1.6	4.3	ns
Rise Time, Fall Time	t+, t-	S1	P _G	A3,B3	0.7	2.0	0.7	2.2	0.7	2.4	ns
Propagation Delay	t+ -, t- +	S1	C _{n+4}	A3,B3	1.5	4.1	1.5	4.1	1.6	4.4	ns
Rise Time, Fall Time	t+, t-	S1	C _{n+4}	A3,B3	0.7	2.2	0.7	2.2	0.7	2.4	ns
Propagation Delay	t+ -, t- +	S1	G _G	A3,B3	1.3	4.5	1.3	4.5	1.4	4.8	ns
Rise Time, Fall Time	t+, t-	S1	G _G	A3,B3	0.5	3.2	0.5	3.2	0.5	3.4	ns

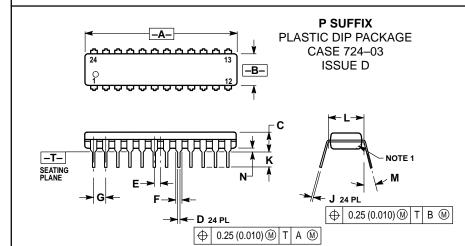
[†] Logic high level (+1.11 Vdc) applied to pins listed. All other input pins are left floating or tied to +0.31 Vdc.

V_{CC1} = V_{CC2} = +2.0 Vdc, V_{EE} = -3.2 Vdc


MOTOROLA 2-277

OUTLINE DIMENSIONS

MOTOROLA 2–278


OUTLINE DIMENSIONS

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 - CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

· Ottober / / II ottober /							
	INC	HES	MILLIMETERS				
DIM	MIN	MAX	MIN	MAX			
Α	1.240	1.285	31.50	32.64			
В	0.285	0.305	7.24	7.75			
С	0.160	0.200	4.07	5.08			
D	0.015	0.021	0.38	0.53			
F	0.045	0.062	1.14	1.57			
G	0.100	BSC	2.54 BSC				
J	0.008	0.013	0.20	0.33			
K	0.100	0.165	2.54	4.19			
L	0.300	0.310	7.62	7.87			
N	0.020	0.050	0.51	1.27			
Р	0.360	0.400	9.14	10.16			

- CHAMFERED CONTOUR OPTIONAL.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- 4. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	1.230	1.265	31.25	32.13		
В	0.250	0.270	6.35	6.85		
С	0.145	0.175	3.69	4.44		
D	0.015	0.020	0.38	0.51		
Е	0.050	BSC	1.27 BSC			
F	0.040	0.060	1.02	1.52		
G	0.100	BSC	2.54 BSC			
J	0.007	0.012	0.18	0.30		
K	0.110	0.140	2.80	3.55		
L	0.300	BSC	7.62 BSC			
М	0°	15°	0°	15°		
N	0.020	0.040	0.51	1.01		

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights nor the rights nor the rights nor the rights or others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MC10H181/D