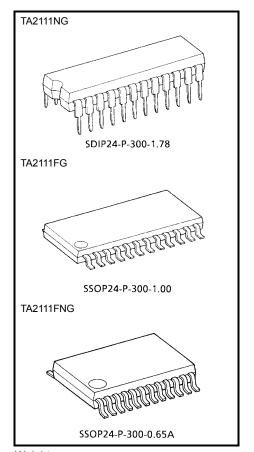
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

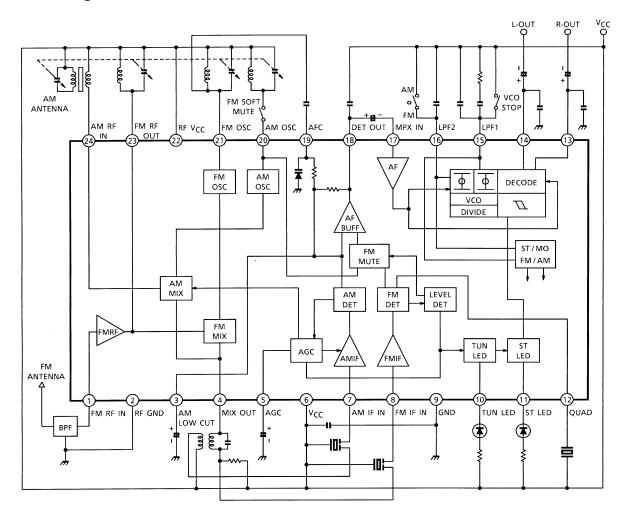

# **TA2111NG,TA2111FG,TA2111FNG**

#### 3 V AM/FM 1 Chip Tuner IC

TA2111NG/FG/FNG are AM/FM 1 chip tuner ICs, which are designed for portable radios and 3 V Head phone radios. FM local oscillation voltage is set up low relativity, for NEW FCC.

#### **Features**

- · For NEW FCC.
- AM Detector coil, FM IFT, IF coupling condenser are not needed.
- For adopting ceramic discriminator, it is not necessary to adjust the FM quad detector circuit.
- Built-in FM MPX VCO circuit.
- Built-in varactor diode for AFC.
- Built-in AM low cut circuit.
- Low supply current. (V<sub>CC</sub> = 3 V, Ta = 25°C)
   I<sub>CCq</sub> (FM) = 9.0 mA (typ.)
   I<sub>CCq</sub> (AM) = 5.0 mA (typ.)
- Operating supply voltage range:  $V_{CC} = 1.8 \sim 7 \text{ V (Ta} = 25 ^{\circ}\text{C)}$




Weight SDIP24-P-300-1.78: 1.2 g (typ.) SSOP24-P-300-1.00: 0.31 g (typ.) SSOP24-P-300-0.65A: 0.14 g (typ.)

Note 1: Handle with care to prevent devices from deteriorations by static electricity.



#### **Block Diagram**

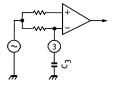


# Explanation of Terminals (Terminal voltage at no signal with test circuit, $V_{CC}$ = 3 V, Ta = 25°C)

| Pin | Characteristics                                               | Internal Circuit                                                                                                          | Termina<br>(Typ | l Voltage<br>.) (V) |
|-----|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| No. |                                                               |                                                                                                                           | AM              | FM                  |
| 1   | FM-RF IN                                                      | 1 U U U U U U U U U U U U U U U U U U U                                                                                   | 0               | 0.8                 |
| 2   | RF GND (GND for FM RF,<br>FM OSC stage)                       | _                                                                                                                         | 0               | 0                   |
| 3   | AM LOW CUT                                                    | $\begin{array}{c} \text{FM DET} \\ \text{AM} \\ \text{DET} \\ \text{I}00k\Omega \\ \text{GND} \\ \text{9} \\ \end{array}$ | 1.0             | 0.8                 |
| 4   | MIX OUT                                                       | VCC 6 FM AM MIX RF GND 2 GND                                                                                              | 3.0             | 2.9                 |
| 5   | AGC (AM AGC)                                                  | OND 300                                                                                                                   | 0               | 0                   |
| 6   | V <sub>CC</sub> (V <sub>CC</sub> for AM, FM IF, FM MPX stage) | _                                                                                                                         | 3.0             | 3.0                 |
| 7   | AM IF IN                                                      | GND 9                                                                                                                     | 2.3             | 2.6                 |

| Pin      | Characteristics                            | Internal Circuit                           | Termina<br>(Typ | Voltage<br>.) (V) |
|----------|--------------------------------------------|--------------------------------------------|-----------------|-------------------|
| No.      |                                            |                                            | AM              | FM                |
| 8        | FM IF IN                                   | V <sub>CC</sub> 6                          | 3.0             | 3.0               |
| 9        | GND (GND for AM, FM IF,<br>FM MPX stage)   | _                                          | 0               | 0                 |
| 10       | TUN LED (Tuning LED)                       | GND (9)                                    | _               | _                 |
| 11       | ST LED (Stereo LED)                        | 19kHz ———————————————————————————————————— | _               | _                 |
| 12       | QUAD<br>(FM QUAD. Detector)                | Vcc 6                                      | 2.5             | 2.2               |
| 13<br>14 | R-OUT (R-ch Output)<br>L-OUT (L-ch Output) | VCC 6 13/14 GND 9                          | 1.2             | 1.2               |

| Pin | Characteristics                                                                                                         | Internal Circuit                                | Termina<br>(Typ | l Voltage<br>.) (V) |
|-----|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|---------------------|
| No. |                                                                                                                         |                                                 | AM              | FM                  |
| 15  | LPF1  • LPF terminal for synchronous Detector  • VCO stop terminal V15 = V <sub>CC</sub> → VCO STOP                     | DC AMP  AMP  GND                                | 2.3             | 2.3                 |
| 16  | LPF2  • LPF terminal for phase Detector • Bias terminal for AM/FM SW circuit V16 = V <sub>CC</sub> → AM V16 = OPEN → FM | AM / FM SW                                      | 3               | 2.2                 |
| 17  | MPX IN                                                                                                                  | (1)————————————————————————————————————         | 0.7             | 0.7                 |
| 18  | DET OUT                                                                                                                 | VCC (B)  AM  FM  FM  FM  FM  FM  FM  FM  FM  FM | 1.0             | 0.9                 |


| Pin | Characteristics                                       | Internal Circuit                | Termina<br>(Typ | l Voltage<br>.) (V) |
|-----|-------------------------------------------------------|---------------------------------|-----------------|---------------------|
| No. |                                                       |                                 | AM              | FM                  |
| 19  | AFC                                                   | cf. pin 3                       | 1               | _                   |
| 20  | AM OSC                                                | V <sub>CC</sub> 6               | 3.0             | 3.0                 |
| 21  | FM OSC                                                | RF V <sub>CC</sub> (2)  GND (9) | 3.0             | 3.0                 |
| 22  | RF V <sub>CC</sub> (V <sub>CC</sub> for FM OSC stage) | _                               | 3.0             | 3.0                 |
| 23  | FM RF OUT                                             | cf. pin 1                       | 3.0             | 3.0                 |
| 24  | AM RF IN                                              | VCC (6) AGC AGC GND (9)         | 3.0             | 3.0                 |

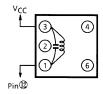
#### **Application Note**

#### 1. AM low-cut circuit

- The AM Low-Cut action is carried out by the bypass of the high frequency component of the positive-feedback signal at the AF AMP stage.

  The external capacitor: C<sub>3</sub> by-passes this component.
- The cut-off frequency  $f_L$  is determined by the internal resistance 10 k $\Omega$  (typ.) and the external capacitor  $C_3$  as following;




$$f_L = \frac{1}{2 \times \pi \times 10 \times 10^3 \times C_3} (Hz)$$

- In the case of the AM Low-Cut function is not needed, set up the value of  $C_3$  over 1  $\mu F$ . In the condition of  $C_3 \ge 1 \ \mu F$ , the frequency characteristic has flat response at the low frequency.
- In FM mode, C3 is a capacitor for AFC Low-Pass filter circuit.

#### 2. FM detection circuit

For the FM detection circuit, detection coil is able to use instead of ceramic discriminator. Recommended circuit and recommended coil are as follows. In this case, please take care that Vin (lim.) falls a little.





| Toot Fraguency | Co   | 0                                        | Turns Wire |           | Turns |   |          |                                  | Reference |
|----------------|------|------------------------------------------|------------|-----------|-------|---|----------|----------------------------------|-----------|
| Test Frequency | (pF) | PF) Q <sub>0</sub> 1-2 2-3 1-3 4-6 (mmφ) |            | Reference |       |   |          |                                  |           |
| 10.7 MHz       | 51   | 45                                       | _          | l         | 30    | ı | 0.08 UEW | TOKO Co., Ltd.<br>600BEAS-10018Z |           |

#### Absolute Maximum Ratings (Ta = 25°C)

| Characteristi         | cs            | Symbol                  | Rating  | Unit |  |
|-----------------------|---------------|-------------------------|---------|------|--|
| Supply voltage        | upply voltage |                         | 8       | ٧    |  |
| LED current           | ILED          | 10                      | mA      |      |  |
| LED voltage           |               | VLED                    | V       |      |  |
|                       | TA2111NG      |                         | 1200    | mW   |  |
| Power dissipation     | TA2111FG      | P <sub>D</sub> (Note 2) | 400     |      |  |
|                       | TA2111FNG     |                         | 500     |      |  |
| Operating temperature |               | T <sub>opr</sub>        | -25~75  | °C   |  |
| Storage temperature   |               | T <sub>stg</sub>        | -55~150 | °C   |  |

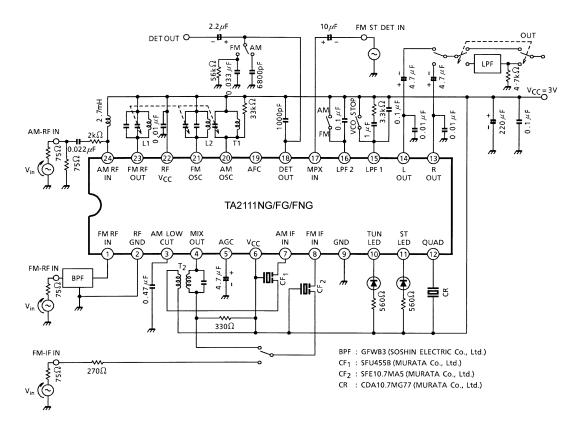
Note 2: Derated above Ta = 25°C in the proportion of 9.6 mW/°C for TA2111NG, of 3.2 mW/°C for TA2111FG and of 4 mW/°C for TA2111FNG.



Electrical Characteristics unless otherwise specified, Ta = 25°C, V<sub>CC</sub> = 3 V,

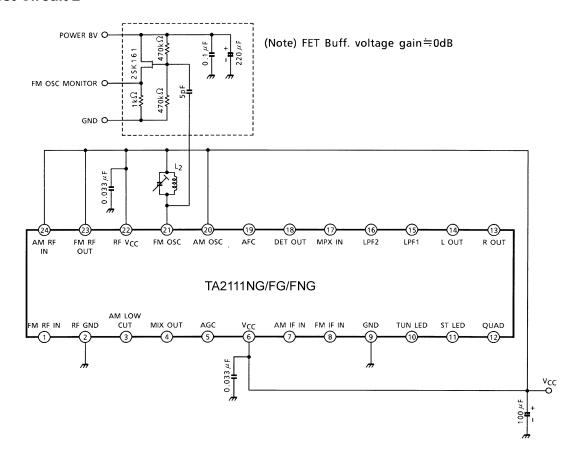
F/E : f = 98 MHz, f<sub>m</sub> = 1 kHz

FM IF : f = 10.7 MHz,  $\Delta f = \pm 22.5 \text{ kHz}$ ,  $f_m = 1 \text{ kHz}$ 


AM : f = 1 MHz, MOD = 30%,  $f_m = 1 \text{ kHz}$ 

 $MPX : f_m = 1 \text{ kHz}$ 

|          | Characteristics           |           | Symbol               | Test<br>Circuit | Test Cond                                                 | ition                   | Min     | Тур. | Max         | Unit        |   |  |
|----------|---------------------------|-----------|----------------------|-----------------|-----------------------------------------------------------|-------------------------|---------|------|-------------|-------------|---|--|
| 0        |                           |           | I <sub>CC (FM)</sub> | 1               | Vin = 0, FM mode                                          |                         | _       | 9    | 12.5        | A           |   |  |
| Supply   | current                   |           | I <sub>CC (AM)</sub> | 1               | Vin = 0, AM mode                                          |                         | _       | 5    | 7.5         | mA          |   |  |
| F/E      | Input limiting voltage    | je        | Vin (lim)            | 1               | −3dB limiting                                             |                         | _       | 7    | _           | dBµV<br>EMF |   |  |
|          | Local OSC voltage         |           | Vosc                 | 2               | f <sub>OSC</sub> = 108.7 MHz                              |                         | _       | 105  | _           | mVrms       |   |  |
|          | Input limiting voltage    | je        | Vin (lim) IF         | 1               | -3dB limiting                                             |                         | 35      | 40   | 45          | dBµV<br>EMF |   |  |
|          | Recovered output          | /oltage   | V <sub>OD</sub>      | 1               | Vin = 80dBµV EMF                                          |                         | 60      | 75   | 90          | mVrms       |   |  |
|          | Signal to noise ration    | 0         | S/N                  | 1               | Vin = 80dBµV EMF                                          | :                       | _       | 65   | _           | dB          |   |  |
| FM<br>IF | Total harmonic dist       | ortion    | THD                  | 1               | Vin = 80dBµV EMF                                          | :                       | _       | 0.2  | _           | %           |   |  |
|          | AM rejection ration       |           | AMR                  | 1               | Vin = 80dBµV EMF                                          | :                       | _       | 45   | _           | dB          |   |  |
|          | LED on sensitivity        |           | VL                   | 1               | I <sub>L</sub> = 1 mA                                     |                         | 40      | 45   | 50          | dBµV<br>EMF |   |  |
|          | Soft mute attenuati       | on        | MUTE                 | 1               | Vin = 0                                                   |                         | _       | 20   | _           | dB          |   |  |
|          | Gain                      |           | G <sub>V</sub>       | 1               | Vin = 25dBµV EMF                                          | :                       | 18      | 35   | 70          | mVrms       |   |  |
|          | Recovered output          | /oltage   | V <sub>OD</sub>      | 1               | Vin = 60dBµV EMF                                          | Vin = 60dBµV EMF        |         | 70   | 90          | mVrms       |   |  |
| AM       | Signal to noise ration    | )         | S/N                  | 1               | Vin = 60dBµV EMF                                          |                         | _       | 41   | _           | dB          |   |  |
|          | Total harmonic distortion |           | THD                  | 1               | Vin = 60dBμV EMF                                          |                         | _       | 0.7  | _           | %           |   |  |
|          | LED on sensitivity        |           | VL                   | 1               | I <sub>L</sub> = 1 mA                                     | 23                      | 28      | 33   | dBµV<br>EMF |             |   |  |
| Din 10   | Pin 18 output resistance  |           | 18 output registance |                 | Б                                                         |                         | FM mode |      | _           | 0.75        | _ |  |
| PIII 18  |                           |           | R <sub>18</sub>      | _               | AM mode                                                   |                         | _       | 15.5 | _           | kΩ          |   |  |
|          | Input resistance          |           | R <sub>IN</sub>      | _               | _                                                         |                         | _       | 55   | _           | kΩ          |   |  |
|          | Output resistance         |           | R <sub>OUT</sub>     | _               | _                                                         |                         | _       | 5    |             | kΩ          |   |  |
|          | Max composite sig voltage | nal input | Vin MAX<br>(STEREO)  | 1               | L + R = 90%, P = 10%,<br>f <sub>m</sub> = 1 kHz, THD = 3% |                         | _       | 700  | _           | mVrms       |   |  |
|          |                           |           |                      |                 | L+R=                                                      | f <sub>m</sub> = 100 Hz | _       | 45   | _           |             |   |  |
|          | Separation                |           | Sep                  | 1               | 180 mVrms,                                                | f <sub>m</sub> = 1 kHz  |         | 45   | _           | dB          |   |  |
|          |                           |           |                      |                 | P = 20 mVrms                                              | f <sub>m</sub> = 10 kHz | _       | 45   | _           |             |   |  |
|          | Total harmonic            | Monaural  | THD<br>(MONAURAL)    | 1               | Vin = 200 mVrms                                           |                         | -       | 0.3  |             | - %         |   |  |
| MPX      | distortion                | Stereo    | THD<br>(STEREO)      | 1               | L + R = 180 mVrms<br>P = 20 mVrms                         | 3,                      | _       | 0.3  | l           | 70          |   |  |
|          | Voltage gain              |           | G <sub>V</sub>       | 1               | Vin = 200 mVrms                                           |                         | -2.5    | -1   | 0.5         | dB          |   |  |
|          | Channel balance           |           | C.B.                 | 1               | Vin = 200 mVrms                                           |                         | -1.5    | 0    | 1.5         | dB          |   |  |
|          | Stereo LED ON             |           | V <sub>L (ON)</sub>  | 1               | Pilot input                                               |                         | _       | 8    | 12          | mVrms       |   |  |
|          | sensitivity OFF           |           | V <sub>L (OFF)</sub> | 1               |                                                           |                         | 3       | 6    |             | IIIVIIIIS   |   |  |
|          | Stereo LED hysteresis     |           | V <sub>H</sub>       | 1               | To LED turn off from LED turn on                          |                         |         | 2    | _           | mVrms       |   |  |
|          | Capture range             |           | C.R.                 | 1               | P = 20 mVrms                                              |                         | _       | ±8   | _           | %           |   |  |
|          | Signal to noise ration    |           | S/N                  | 1               | _                                                         |                         | _       | 80   | _           | dB          |   |  |




#### **Test Circuit 1**



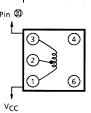


#### **Test Circuit 2**



#### **Coil Data**

| Coil No.              | Test Fred | Test Fred | Test Freq. | Test Fred | Test Fred | Test Fred | L   | Co             | $Q_0$ |         |                                | Turns |  |  | Wire | Reference |
|-----------------------|-----------|-----------|------------|-----------|-----------|-----------|-----|----------------|-------|---------|--------------------------------|-------|--|--|------|-----------|
| Con No.               | restrieq. | (µH)      | (pF)       | ÿ         | 1-2       | 2-3       | 1-3 | 1-4            | 4-6   | (mmφ)   | Reference                      |       |  |  |      |           |
| L <sub>1</sub> FM RF  | 100 MHz   | _         | -          | 79        | _         | _         | _   | $2\frac{1}{2}$ | _     | 0.16UEW | TOKO Co., Ltd.<br>666SNF-305NK |       |  |  |      |           |
| L <sub>2</sub> FM OSC | 100 MHz   | ı         | ı          | 76        | _         |           |     | 2              |       | 0.16UEW | TOKO Co., Ltd.<br>666SNF-306NK |       |  |  |      |           |
| T <sub>1</sub> AM OSC | 796 kHz   | 268       | -          | 65        | 19        | 95        | _   | _              | _     | 0.05UEW | TOKO Co., Ltd.<br>5PNR-5146Y   |       |  |  |      |           |
| T <sub>2</sub> AM IFT | 455 kHz   |           | 470        | 60        | _         |           | 109 |                | 7     | 0.05UEW | TOKO Co., Ltd.<br>5PLG-5147X   |       |  |  |      |           |

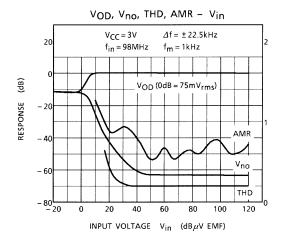

L<sub>1</sub>: FM RF



 $\mathsf{L}_2:\mathsf{FM}\ \mathsf{OSC}$ 



 $\mathsf{T}_1:\mathsf{AM}\ \mathsf{OSC}$ Pin 🚳




 $\mathsf{T}_2:\mathsf{AM}\mathsf{\;IFT}$ FM C.F. AM C.F. Pin ④

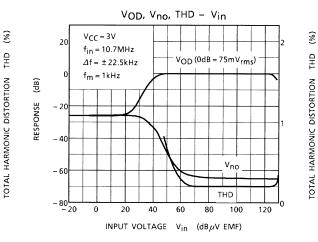
(BOTTOM VIEW)

 $V_{CC}$ 

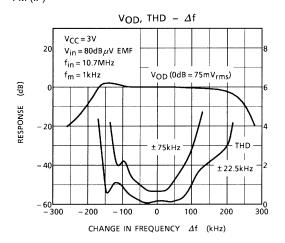
FM (F/E+IF)



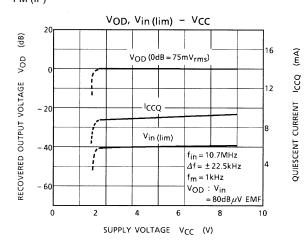
FM (IF)


H

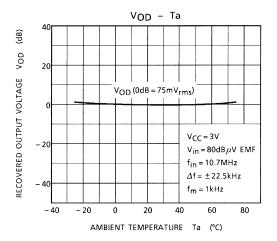
TOTAL HARMONIC DISTORTION


%

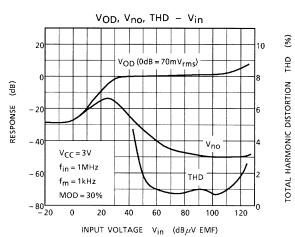
댐


TOTAL HARMONIC DISTORTION



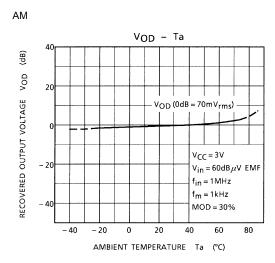

FM (IF)

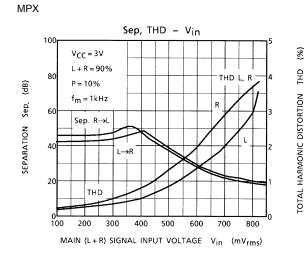


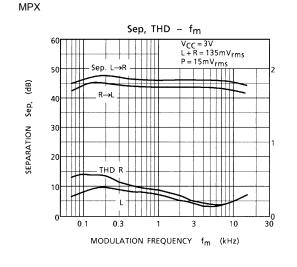

FM (IF)

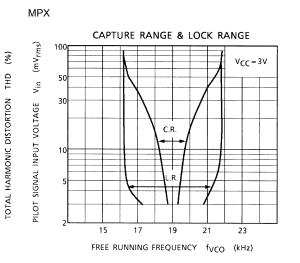



FM (IF)

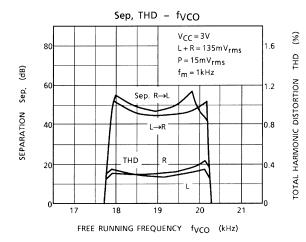




AM

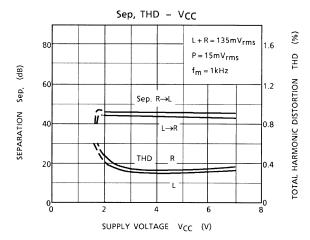




2006-04-11 11

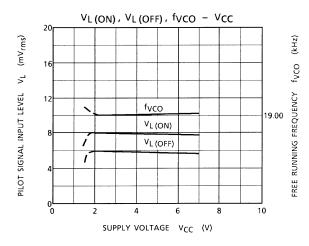






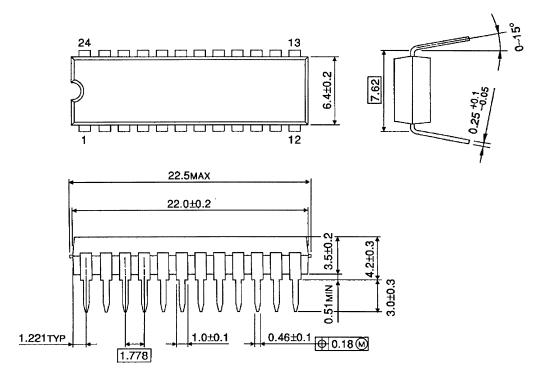







MPX



MPX

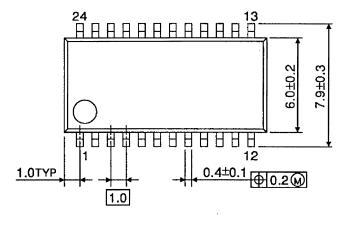


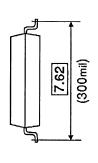

MPX

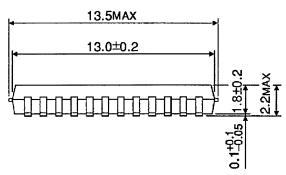


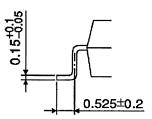
## **Package Dimensions**

SDIP24-P-300-1.78 Unit: mm



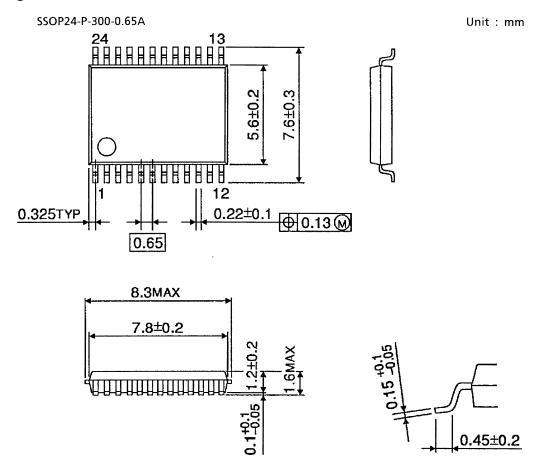


Weight: 1.2 g (typ.)


### **Package Dimensions**


SSOP24-P-300-1.00

Unit: mm










Weight: 0.31 g (typ.)

### **Package Dimensions**



Weight: 0.14 g (typ.)

#### RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023 D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023 A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023\_B
- The products described in this document shall not be used or embedded to any downstream products of which
  manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106\_Q
- The information contained herein is presented only as a guide for the applications of our products. No
  responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
  may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
  TOSHIBA or others. 021023 C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023\_E

About solderability, following conditions were confirmed

- Solderability
  - (1) Use of Sn-37Pb solder Bath
    - · solder bath temperature = 230°C
    - · dipping time = 5 seconds
    - · the number of times = once
    - · use of R-type flux
  - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
    - · solder bath temperature = 245°C
    - · dipping time = 5 seconds
    - · the number of times = once
    - · use of R-type flux