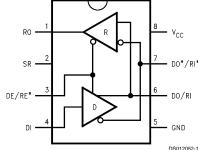
National Semiconductor

DS36C280 Slew Rate Controlled CMOS EIA-RS-485 Transceiver

General Description

The DS36C280 is a low power differential bus/line transceiver designed to meet the requirements of RS-485 Standard for multipoint data transmission. In addition, it is compatible with TIA/EIA-422-B.


The slew rate control feature allows the user to set the driver rise and fall times by using an external resistor. Controlled edge rates can reduce switching EMI.

The CMOS design offers significant power savings over its bipolar and ALS counterparts without sacrificing ruggedness against ESD damage. The device is ideal for use in battery powered or power conscious applications. I_{CC} is specified at 500 μ A maximum.

The driver and receiver outputs feature TRI-STATE® capability. The driver outputs operate over the entire common mode range of -7V to +12V. Bus contention or fault situations are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.

The receiver incorporates a fail safe circuit which guarantees a high output state when the inputs are left open (Note 1).

Order Number DS36C280TM, DS36C280TN DS36C280M and DS36C280N See NS Package Number M08A or N08E

Features

- 100% RS-485 compliant
- Guaranteed RS-485 device interoperation
- Low power CMOS design: I_{CC} 500 µA max
- Adjustable slew rate control
 Minimizes EMI affects
- Built-in power up/down glitch-free circuitry
 Permits live transceiver insertion/displacement
- DIP and SOIC packages available
- Industrial temperature range: -40°C to +85°C
- On-board thermal shutdown circuitry
- Prevents damage to the device in the event of excessive power dissipation
- Wide common mode range: -7V to +12V
- Receiver open input fail-safe (Note 1)
- 1/4 unit load (DS36C280): ≥128 nodes
- 1/2 unit load (DS36C280T): ≥64 nodes
- ESD (human body model): ≥2 kV
- . . .

Truth Table

DRIVER SECTION						
DE/RE*	DI	DO/RI	DO*/RI*			
Н	Н	н	L			
н	L	L	н			
L	Х	Z	Z			
RECEIVER SE	CTION					
DE/RE*	R	l-RI*	RO			
L	≥-	≥+0.2V				
L		≤-0.2V				
н		Х	Z			
L	OPEN	I (Note 1)	н			

Note 1: Non-terminated, Open Inputs only

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1999 National Semiconductor Corporation DS012052

www.national.com

Absolute Maximum Ratings (Note 2)

•

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	+12V
Input Voltage (DE/RE*, & DI)	-0.5V to (V _{CC} +0.5V)
Common Mode (V _{CM})	
Driver Output/Receiver Input	±15V
Input Voltage (DO/RI, DO*/RI*)	±14V
Receiver Output Voltage	–0.5V to (V _{CC} +0.5V)
Maximum Package Power Dissip	ation @ +25°C
M Package 1190 mV, derate	9.5 mW/°C above +25°C
N Package 794 mV, derate	6.0 mW/°C above +25°C

 Storage Temperature Range
 -65°C to +150°C

 Lead Temperature
 +260°C

 (Soldering 4 sec.)
 +260°C

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	+4.75	+5.0	+5.25	V
Bus Voltage	-7		+12	V
Operating Free Air Tem	perature (T ₄	J		
DS36C280T	-40	+25	+85	°C
DS36C280	0	+25	+70	°C

Electrical Characteristics (Notes 3, 4)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions		Reference		Min	Тур	Max	Units
DIFFER	ENTIAL DRIVER CHARACTE	RISTICS							
V _{OD1}	Differential Output Voltage	I _O = 0 mA (No Load)		(400)		1.5		5.0	V
V _{OD0}	Output Voltage	$I_{O} = 0 \text{ mA}$		(422) (485)		0		5.0	V
$V_{OD0^{\star}}$	Output Voltage	(Output to GND)		(485)		0		5.0	V
V _{OD2}	Differential Output Voltage	$R_L = 50\Omega$		(422)	Figure 1	2.0	2.8		V
	(Termination Load)	$R_L = 27\Omega$		(485)		1.5	2.3	5.0	V
ΔV_{OD2}	Balance of V _{OD2}	$R_L = 27\Omega \text{ or } 50\Omega$		(N	ote 5)	-0.2	0.1	+0.2	V
	V _{OD2} – V _{OD2*}			(422, 485)					
V _{OD3}	Differential Output Voltage			gure 2	1.5	2.0	5.0	V	
	(Full Load)	$V_{\text{TEST}} = -7V \text{ to } +12V$							
V _{oc}	Driver Common Mode	$R_L = 27\Omega$		(485)	Figure 1	0		3.0	V
	Output Voltage	$R_{L} = 50\Omega$		(422)		0		3.0	V
ΔV_{OC}	Balance of V _{OC}	$R_L = 27\Omega \text{ or}$		(Note 5)		-0.2		+0.2	V
	V _{OC} - V _{OC*}	$R_{L} = 50\Omega$		(422, 485)					
IOSD	Driver Output Short-Circuit	V _O = +12V		(485) Figure 4			200	+250	mA
	Current	$V_{O} = -7V$		(•	485)		-190	-250	mA
RECEIV	ER CHARACTERISTICS	•							
V _{TH} Differential Input High		$V_{O} = V_{OH}, I_{O} = -0.4 \text{ mA}$					+0.035	+0.2	V
Thres	Threshold Voltage	$-7V \le V_{CM} \le +12V$		(N	ote 6)				
V _{TL}	Differential Input Low	$V_{\rm O} = V_{\rm OL}, \ I_{\rm O} = 0.4 \ {\rm m}$	A	(422, 485)		-0.2	-0.035		V
	Threshold Voltage	$-7V \le V_{CM} \le +12V$							
V _{HST}	Hysteresis	$V_{CM} = 0V$					70		mV
R _{IN}	Input Resistance	$-7V \le V_{CM} \le +12V$	$V \le V_{CM} \le +12V$ DS36C280T		6C280T	24	68		kΩ
R _{IN}	Input Resistance	$-7V \le V_{CM} \le +12V$		DS3	36C280	48	68		kΩ
I _{IN}	Line Input Current	Other Input = 0V	DS36C280			0	0.19	0.25	mA
	(Note 8)	$DE = V_{IL}, RE^* = V_{IL}$ $V_{IN} = -7V$		7V	0	-0.1	-0.2	mA	
		V _{CC} = 4.75 to 5.25	DS36C280T	V _{IN} = +12V		0	0.19	0.5	mA
		or 0V		V _{IN} = -	7V	0	-0.1	-0.4	mA
I _{ING}	Line Input Current Other Input = 0V DS36C280		V _{IN} = +12V		0	0.19	0.25	mA	
	Glitch (Note 8)	$DE = V_{IL}, RE^* = V_{IL}$		V _{IN} = -	7V	0	-0.1	-0.2	mA
		$V_{\rm CC} = +3.0V$	DS36C280T	V _{IN} = +	12V	0	0.19	0.5	mA
		or 0V $T_A = 25^{\circ}C$		V _{IN} = -	7V	0	-0.1	-0.4	mA
IB	Input Balance Test	RS = 500Ω		(422)	(Note 10)			±400	mV
V _{он}	High Level Output Voltage	$I_{OH} = -4 \text{ mA}, V_{ID} = +100000000000000000000000000000000000$	0.2V		RO	3.5	4.6		V
VoL	Low Level Output Voltage	$I_{OL} = +4 \text{ mA}, V_{ID} = -0$).2V	Fig	ure 11		0.3	0.5	V

www.national.com

	upply Voltage and Operating							1	
Symbol	Parameter	Conditions	5	Referen	ice	Min	Тур	Max	Unit
RECEIV	ER CHARACTERISTICS							1	· · ·
I _{OSR}	Short Circuit Current	$V_{O} = GND$ $V_{O} = 0.4V \text{ to } 2.4V$		RO		7	35	85	m/
	TRI-STATE Leakage Current							±1	μΑ
	CHARACTERISTICS			1		0.0			
VIH	High Level Input Voltage			-		2.0 GND		V _{cc}	
V _{IL}	Low Level Input Voltage			DE/RE	DE/RE*,			0.8	
<u>I_{IH}</u>	High Level Input Current	$V_{IH} = V_{CC}$		DI				2	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = 5.0V$ $V_{IL} = 0V$						-2	μΑ
		V _{CC} = +3.0V						-2	μ
		SR = 0V		SR				-1	m
I _{CCR}	Power Supply Current	Driver OFF, Receiver C		V _{cc}			200	500	μ/
I _{CCD}	(No Load)	Driver ON, Receiver OF	FF				200	500	μ
	CHARACTERISTICS			Reference			- I -	inux	0
Symbo		Conditions		ference	Min	Ту	b	Max	Unit
t _{PHLD}	Differential Propagation	$R_1 = 54\Omega, C_1 = 100 \text{ pl}$	F Fiai	ures 5, 6	10	399	9 1	1000	ns
THED	Delay High to Low		J J	,					
t _{PLHD}	Differential Propagation	_			10	400) 1	1000	ns
	Delay Low to High								
t _{skD}	Differential Skew	-			0	1		10	ns
	Differential Skew t _{PHLD} - t _{PLHD}	SR = Open			0		0	10	
t _r	Differential Skew t _{PHLD} - t _{PLHD} Rise Time	SR = Open	_		0	287		10	ns
t _r t _f	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time				0	287 307	0	10	ns ns
t _r t _f t _r	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time Rise Time	SR = Open SR = 100 kΩ			0	287 307 159	0	10	ns ns ns
t _r t _f t _r t _f	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time Rise Time Fall Time Fall Time	SR = 100 kΩ				287 307 159 164	0 0 0		ns ns ns
t _r t _f t _r t _f t _r	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time Rise Time Fall Time Raise Time Fall Time Rise Time Rise Time		_		100	287 307 159 164 337	0 0 0 7 1	1000	ns ns ns ns
t _r t _f t _r t _f t _r	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time Fall Time Rise Time Fall Time	SR = 100 kΩ SR = Short		ures 7, 8		287 307 159 164	0 0 7 1 3 1		ns ns ns ns ns
t _r t _f t _f t _f t _f t _f t _{PHZ}	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z	SR = 100 kΩ		ures 7, 8 ires 9, 10	100	287 307 159 164 337 348 110	0 0 7 1 3 1 0 2	1000 1000 2000	ns ns ns ns ns ns
t _r t _f t _r t _r t _r t _r t _r t _{PHZ}	Differential Skew It_PHLD - t_PLHD Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z Disable Time Low to Z	SR = 100 kΩ SR = Short C _L = 15 pF	Figu	res 9, 10	100	287 307 159 164 337 348 110 500	0 0 7 1 3 1 0 2 0	1000 1000 2000 800	ns ns ns ns ns ns ns
t _r t _f t _f t _f t _f t _f t _f t _{PHZ} t _{PLZ} t _{PZH}	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z	SR = 100 kΩ SR = Short	Figu Figu		100	287 307 159 164 337 348 110	0 0 7 1 3 1 0 2 0 2 0	1000 1000 2000	ns ns ns ns ns ns ns
t _r t _f t _r t _r t _r t _{PHZ} t _{PLZ} t _{PZH}	Differential Skew It_PHLD - t_PLHD Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z Disable Time Low to Z Enable Time Z to High	SR = 100 kΩ SR = Short C _L = 15 pF	Figu Figu	ures 9, 10 ures 7, 8	100	287 307 159 164 337 348 110 500 300	0 0 7 1 3 1 0 2 0 2 0	1000 1000 2000 800 500	ns ns ns ns ns ns ns
t _r t _f t _r t _r t _r t _{PHZ} t _{PLZ} t _{PZH}	Differential Skew It_PHLD - t_PLHD Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z Disable Time Low to Z Enable Time Z to High Enable Time Z to Low	SR = 100 kΩ SR = Short C _L = 15 pF	Figu Figu	ures 9, 10 ures 7, 8	100	287 307 159 164 337 348 110 500 300	0 0 0 7 1 3 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 1000 2000 800 500	ns ns ns ns ns ns ns ns
t _r t _f t _r t _r t _r t _{PHZ} t _{PLZ} t _{PZH} t _{PZL} RECEIV	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z Disable Time Low to Z Enable Time Z to High Enable Time Z to Low ER CHARACTERISTICS Propagation Delay	$SR = 100 \text{ k}\Omega$ $SR = Short$ $C_{L} = 15 \text{ pF}$ $C_{L} = 100 \text{ pF}$	Figu Figu Figu	ures 9, 10 ures 7, 8	100	287 307 159 164 337 348 110 500 300 300	0 0 0 0 7 1 3 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 1000 2000 800 500 500	ns ns ns ns ns ns ns ns ns ns ns ns
t, t, t, t, t, t, t, t, t, t, t, t, t, t	Differential Skew It_PHLD - tPLHD Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z Disable Time Low to Z Enable Time Z to High Enable Time Z to Low ER CHARACTERISTICS Propagation Delay High to Low Propagation Delay Low to High	$SR = 100 \text{ k}\Omega$ $SR = Short$ $C_{L} = 15 \text{ pF}$ $C_{L} = 100 \text{ pF}$	Figu Figu Figu	rres 9, 10 ures 7, 8 ires 9, 10	100 100 30 30	287 307 159 164 337 348 110 500 300 300 210	0	1000 1000 2000 800 500 500 400	ns ns ns ns ns ns ns ns ns ns
t, t, t, t, t, t, t, t, t, t, t, t, t, t	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z Disable Time Low to Z Enable Time Z to High Enable Time Z to Low ER CHARACTERISTICS Propagation Delay High to Low Propagation Delay Low to High Skew, t _{PHL} - t _{PLH}	SR = 100 kΩ SR = Short C _L = 15 pF C _L = 100 pF C _L = 15 pF	Figu Figu Figu	rres 9, 10 ures 7, 8 ires 9, 10	100 100 30	287 307 159 164 337 348 110 500 300 300 210 190 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 1000 2000 800 500 500 400 400 50	ns ns ns ns ns ns ns ns ns ns
t, t, t, t, t, t, t, t, t, t, t, t, t, t	Differential Skew It_PHLD - tPLHD Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z Disable Time Low to Z Enable Time Z to High Enable Time Z to Low ER CHARACTERISTICS Propagation Delay High to Low Propagation Delay Low to High	$SR = 100 \text{ k}\Omega$ $SR = Short$ $C_{L} = 15 \text{ pF}$ $C_{L} = 100 \text{ pF}$	Figu Figu Figu	rres 9, 10 ures 7, 8 ires 9, 10	100 100 30 30	287 307 159 164 337 348 110 500 300 300 210 210 200 50	0 0 0 0 0 0 0 0 0 0	1000 1000 2000 800 500 500 400 400 50 150	ns ns ns ns ns ns ns ns ns ns ns
t, t, t, t, t, t, t, t, t, t, t, t, t, t	Differential Skew t _{PHLD} - t _{PLHD} Rise Time Fall Time Rise Time Fall Time Rise Time Fall Time Disable Time High to Z Disable Time Low to Z Enable Time Z to High Enable Time Z to Low ER CHARACTERISTICS Propagation Delay High to Low Propagation Delay Low to High Skew, t _{PHL} - t _{PLH}	SR = 100 kΩ SR = Short C _L = 15 pF C _L = 100 pF C _L = 15 pF	Figu Figu Figu	rres 9, 10 ures 7, 8 ires 9, 10	100 100 30 30	287 307 159 164 337 348 110 500 300 300 210 190 20	0 0 0 0 0 0 0 0 0 0	1000 1000 2000 800 500 500 400 400 50	ns ns ns ns ns ns ns ns ns ns ns

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD1} and V_{OD2} . Note 4: All typicals are given for: $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$.

Note 5: Delta $|V_{OD2}|$ and Delta $|V_{OC}|$ are changes in magnitude of V_{OD2} and V_{OC} , respectively, that occur when input changes state.

3

· ·

Switching Characteristics (Notes 4, 9, 11) (Continued)

Note 6: Threshold parameter limits specified as an algebraic value rather than by magnitude.

Note 7: Hysteresis defined as $V_{HST} = V_{TH} - V_{TL}$.

Note 8: I_{IN} includes the receiver input current and driver TRI-STATE leakage current.

Note 9: C_L includes probe and jig capacitance.

Note 10: For complete details of test, see RS-485.

Note 11: SR = GND for all Switching Characteristics unless otherwise specified.

Parameter Measurement Information

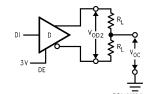


FIGURE 1. Driver V_{OD2} and V_{OC}

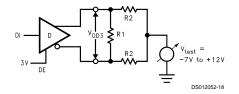


FIGURE 2. Driver V_{OD3}

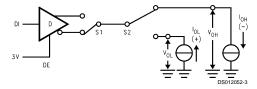


FIGURE 3. Driver $V_{\rm OH}$ and $V_{\rm OL}$

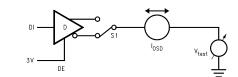
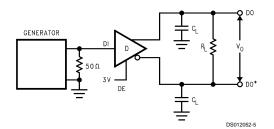



FIGURE 4. Driver I_{OSD}

DS012052-

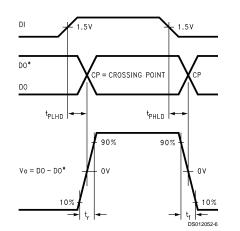


FIGURE 6. Driver Differential Propagation Delays and Differential Rise and Fall Times

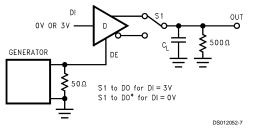
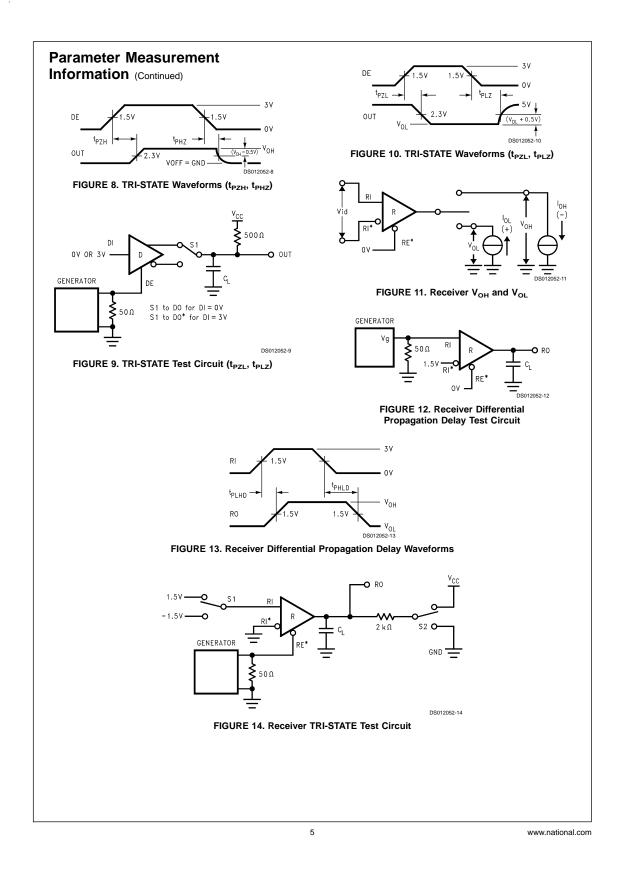
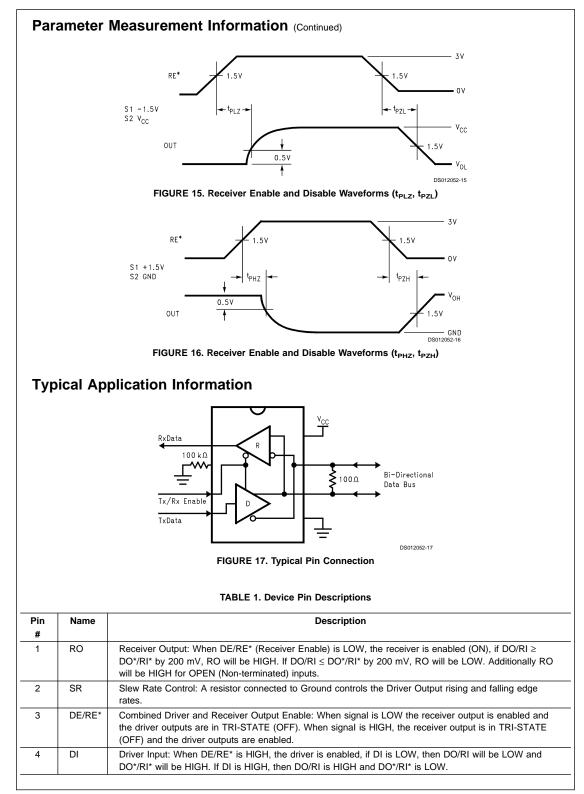




FIGURE 7. TRI-STATE Test Circuit (t_{PZH} , t_{PHZ})

www.national.com

4

www.national.com

Typical Application Information (Continued)						
	TABLE 1. Device Pin Descriptions (Continued)					
Pin	Pin Name Description					
#						
5	GND	Ground Connection				
6	DO/RI	Driver Output/Receiver Input, 485 Bus Pin.				
7	DO*/RI*	Driver Output/Receiver Input, 485 Bus Pin.				
8	V _{cc}	Positive Power Supply Connection: Recommended operating range for V_{CC} is +4.75V to +5.25V.				

Unit Load

A unit load for a RS-485 receiver is defined by the input current versus the input voltage curve. The gray shaded region is the defined operating range from -7V to +12V. The top border extending from -3V at 0 mA to +12V at +1 mA is defined as one unit load. Likewise, the bottom border extending from +5V at 0 mA to -7V at -0.8 mA is also defined as one unit load (see Figure 18). A RS-485 driver is capable of driving up to 32 unit loads. This allows upto 32 nodes on a single bus. Although sufficient for many applications, it is sometime desirable to have even more nodes. For example an aircraft that has 32 rows with 4 seats per row could benefit from having 128 nodes on one bus. This would allow signals to be transferred to and from each individual seat to 1 main station. Usually there is one or two less seats in the last row of the aircraft near the restrooms and food storage area. This frees the node for the main station.

The DS36C278, the DS36C279, and the DS36C280 all have $\frac{1}{2}$ unit load and $\frac{1}{4}$ unit load (UL) options available. These devices will allow upto 64 nodes or 128 nodes guaranteed over temperature depending upon which option is selected. The $\frac{1}{2}$ UL option is available in industrial temperature and the $\frac{1}{4}$ UL is available in commercial temperature.

First, for a $\frac{1}{2}$ UL device the top and bottom borders shown in *Figure 18* are scaled. Both 0 mA reference points at +5V and -3V stay the same. The other reference points are +12V at +0.5 mA for the top border and -7V at -0.4 mA for the bottom border (see *Figure 18*). Second, for a $\frac{1}{4}$ UL device the top and bottom borders shown in *Figure 18* are scaled also. Again, both 0 mA reference points at +5V at -0.25 mA for the top border and -7V at -0.2 mA for the bottom border (see *Figure 18*).

The advantage of the $\frac{1}{2}$ UL and $\frac{1}{4}$ UL devices is the increased number of nodes on one bus. In a single master multi-slave type of application were the number of slaves exceeds 32, the DS36C278/279/280 may save in the cost of extra devices like repeaters, extra media like cable, and/or extra components like resistors.

The DS36C279 and DS36C280 have addition feature which offer more advantages. The DS36C279 has an automatic sleep mode function for power conscious applications. The

DS36C280 has a slew rate control for EMI conscious applications. Refer to the sleep mode and slew rate control portion of the application information section in the corresponding datasheet for more information on these features.

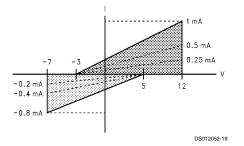
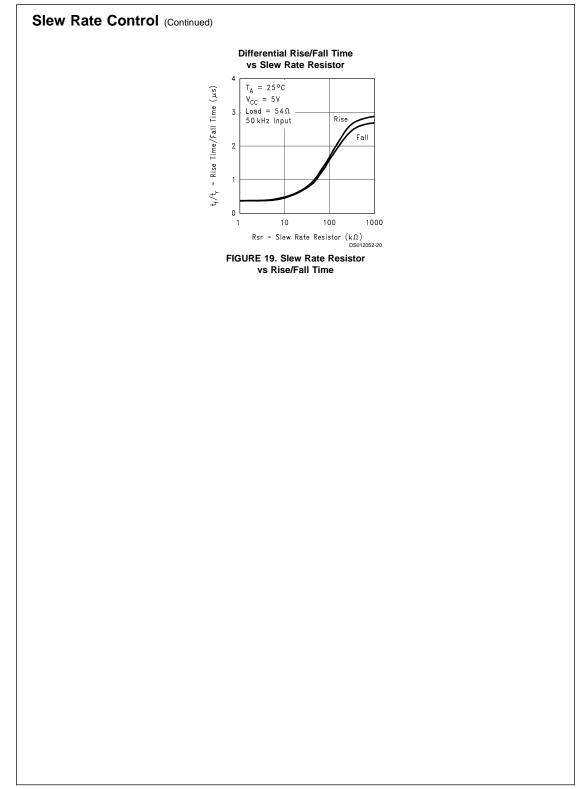
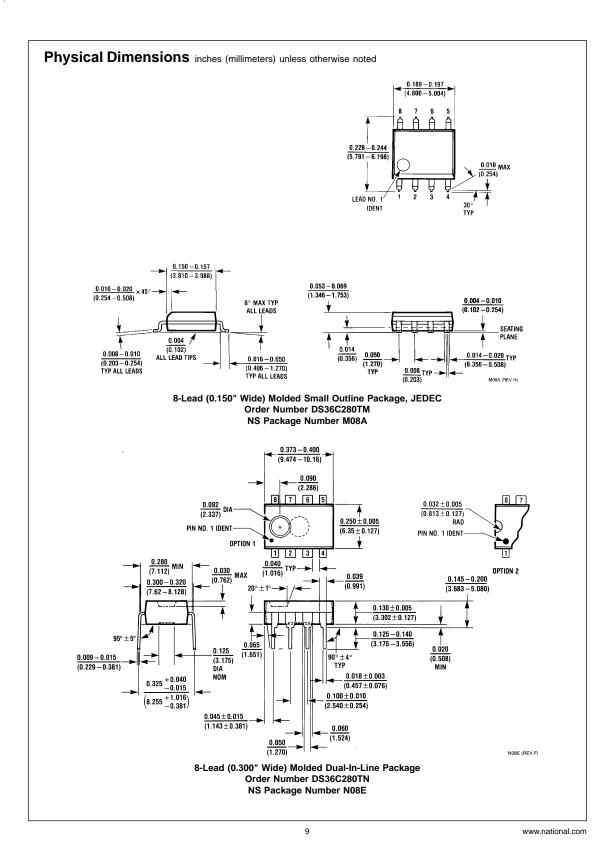



FIGURE 18. Input Current vs Input Voltage Operating Range

Slew Rate Control


The DS36C280 features an adjustable slew rate control. This feature allows more control over EMI levels than tradition fixed edge rate devices. The slew rate control may be adjusted with or without any external components. The DS36C280 offers both low power (I_{CC} 500 μA max) and low EMI for an RS-485 interface.

The slew rate control is located at pin two of the device and only controls the driver output edges. The slew rate control pin (SR) may be left open or shorted to ground, with or without a resistor. When the SR pin is shorted to ground without a resistor, the driver output edges will transition typically 3 µs. When the SR pin is shorted to ground with a resistor, the driver output edges will transition between 350 ns and 3 µs depending on the resistor value. Refer to the slew rate versus resistor value curve in this datasheet for determining resistor values and expected typical slew rate value. Please note, when slowing the edge rates of the device (see *Figure 19*) will decrease the maximum data rate also.

www.national.com

8

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Corporation	Europe	Asia Pacific Customer	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 93 58		
ww.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.