5-channel BTL driver for CD and MD Players BA6996FP

The BA6996FP, an IC designed for CD and MD players, has a 5-channel BTL power driver and a standard operational amplifier. The spindle and tray driver share a single output buffer, and are specified with a control pin. In addition, the internal level shift circuit reduces the number of attached components.

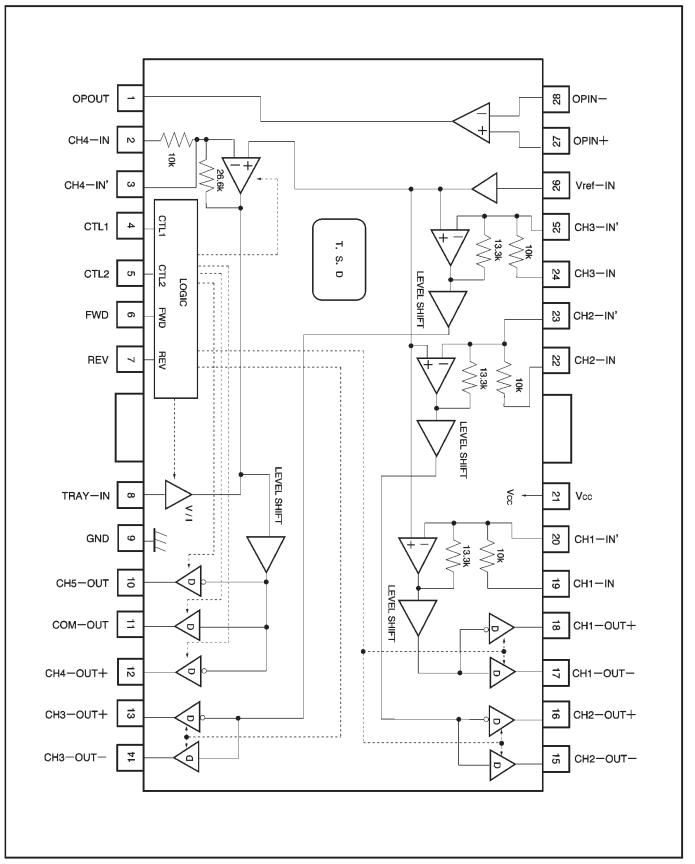
Applications

CD players, CD-ROM drives, MD players and other optical disc devices

Features

- 1) A 5-channel BTL driver in a HSOP 28-pin package, allowing for application miniaturization.
- 2) Five drivers are turned on and off according to the combination of control pin logic.
- The tray driver operates even when the servo power supply drops.
- 4) Internal thermal shutdown circuit.
- 5) Gain is adjustable with an attached resistor.
- 6) Internal standard operational amplifier.
- 7) Supports low-voltage servos.

•Absolute maximum ratings (Ta = 25° C)

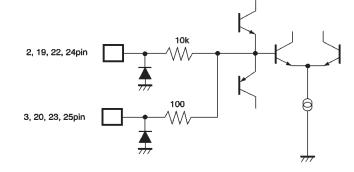

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	1.7*	w
Operating temperature	Topr	-35~+85	Ĵ
Storage temperature	Tstg	-55~+150	Ĵ

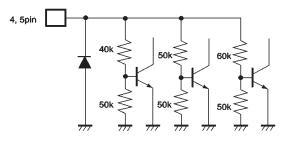
* Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C. When mounted on a 50 \times 50 \times 1mm paper phenol PCB board.

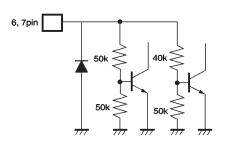
•Recommended operating conditions (Ta = 25° C)

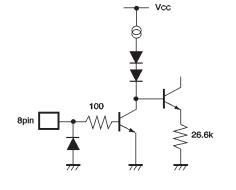
Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.8	—	12	V

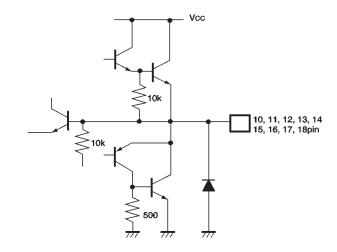
Block diagram

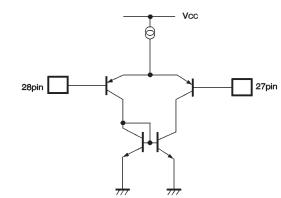


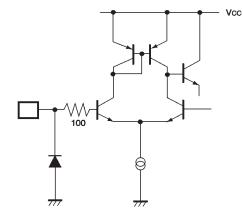

Pin descriptions


Pin No.	Pin name	Function			
1	OPOUT	Operational amplifier output			
2	CH4—IN	Channel 4 input			
3	CH4—IN'	Channel 4 gain adjustment input			
4	CTL1	Control 1 input			
5	CTL2	Control 2 input			
6	FWD	Tray forward input			
7	REV	Tray reverse input			
8	TRAY-IN	Tray input			
9	GND	Substrate ground			
10	CH5-OUT-	Tray negative output			
11	COM-OUT	Tray positive output/channel 4 negative output			
12	CH4-OUT+	Channel 4 positive output			
13	CH3-OUT+	Channel 3 positive output			
14	CH3-OUT-	Channel 3 negative output			
15	CH2-OUT-	Channel 2 negative output			
16	CH2-OUT+	Channel 2 positive output			
17	CH1-OUT-	Channel 1 negative output			
18	CH1-OUT+	Channel 1 positive output			
19	CH1-IN	Channel 1 input			
20	CH1-IN'	Channel 1 gain adjustment input			
21	Vcc	Vcc			
22	CH2—IN	Channel 2 input			
23	CH2—IN'	Channel 2 gain adjustment input			
24	CH3—IN	Channel 3 input			
25	CH3—IN'	Channel 3 gain adjustment input			
26	Vref—IN	Bias amplifier input			
27	OPIN+	Operational amplifier non-inverted input			
28	OPIN-	Operational amplifier inverted input			


* Positive and negative output is relative to the polarity of the input pins. (For example, pin 18 output is HIGH when pin 19 output is LOW.)


Input/output circuits





Electrical characteristics (ur	nless other	wise note	ed, Ta = 2	5°C, Vcc	= 8V, f =	1kHz, RL = 8Ω)	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current dissipation	lcc	8.5	11.5	14.5	mA	No load	
Output voltage 1, offset	Voo	-40	—	40	mV	Channel 1 to 3	
Output voltage 2, offset	Voo	-100	-	100	mV	Channel 4	
Maximum output pin voltage 1	Vohd1	3.7	4.3	—	V	VIN=Vcc	
Maximum output pin voltage 2	VOHD2	_	-4.3	-3.7	V	V _{IN} =GND	
Closed loop voltage gain 1	Gvc1	6.5	8.0	9.5	dB	VIN=0.1Vms, 1kHz (excluding channel4)	
Closed loop voltage gain 2	Gvc2	11.5	14.0	16.5	dB	VIN=0.1Vrms, 1kHz (channel4)	
Ripple rejection	RR	—	60	—	dB	V _{IN} =0.1V _{rms} , 100Hz	
Slew rate	SR	_	2.0	—	V/µs	100 Hz square wave, 3 VP-P output	
〈Tray driver〉			•				
Output voltage F	Vof	2.5	3.0	3.5	V	Pin 8 voltage=3 V	
Output voltage R	Vor	-3.5	-3.0	-2.5	V	Pin 8 voltage=3 V	
Output voltage range F	Vome	3.7	4.3	-	V	Pin 8 voltage=5 V	
Output voltage range R	Vomr	_	-4.3	-3.7	v	Pin 8 voltage=5 V	
Load requlation F	△VFI	-	250	500	mV	I∟=100-400 mA, pin 8 voltage = 2.5 V	
Load requlation R	△VRI	_	250	500	mV	I∟=100-400 mA, pin 8 voltage = 2.5 V	
Line requlation F	ΔV_{FL}	_	300	600	mV	Vcc=5V~12V	
Line requlation R	$\triangle V_{RL}$	-	300	600	mV	Vcc=5V~12V	
Output voltage, offset	Vool	-50	_	50	mV	Braking, output voltage	
(Logic: CT1, CTL2, FWD and I	REV	1					
Input high level voltage	Vін	2.0	_	8.0	v	Maximum: Vcc	
Input low level voltage	Vı∟	-0.3	_	0.5	v		
Input high level current	Ін	_	_	500	μA		
Input low level current	١L	_	_	500	μA		
(Operational amplifier)		1			1	1	
Offset voltage	VOFOP	-5	0	5	mV		
Input bias current	BIAS	_	_	300	nA		
Output high level voltage	Vонор	6.0	_	_	v		
Output low level voltage	VOLOP	_	_	1.1	v		
Output drive current (source)	loso	10	40	-	mA	GND at 50Ω	
Output drive current (sink)	losi	10	50	_	mA	Vcc at 50 Ω	
Open loop voltage gain	Gvo	_	78	_	dB	V _{IN} =−75dBV, 1kHz	
Slew rate	SRop	_	1	_	V/µs	100 Hz square wave, 4 VP-P output	
Ripple rejection	RRop	_	65	_	dB	VIN=0.1Vrms, 100Hz	
Synchronous signal rejection	CMRR	_	84	_	dB	VIN=0.1Vrms, 1kHz	

Electrical characteristics (unless otherwise noted, Ta = 25° C, Vcc = 8V, f = 1kHz, RL = 8 Ω)

 $\ensuremath{\mathbb{O}}$ Not designed for radiation resistance.

BA6996FP

Measurement circuit

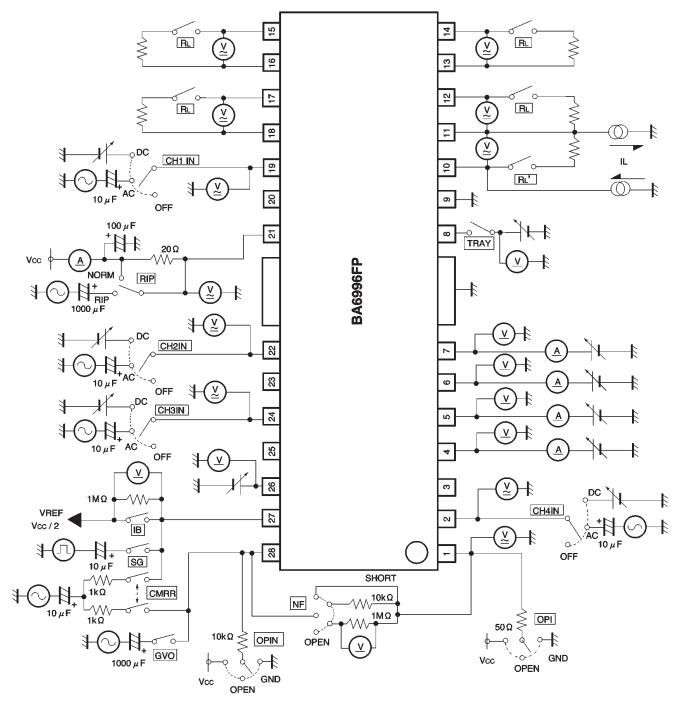


Fig.1

ROHM

507

Application example

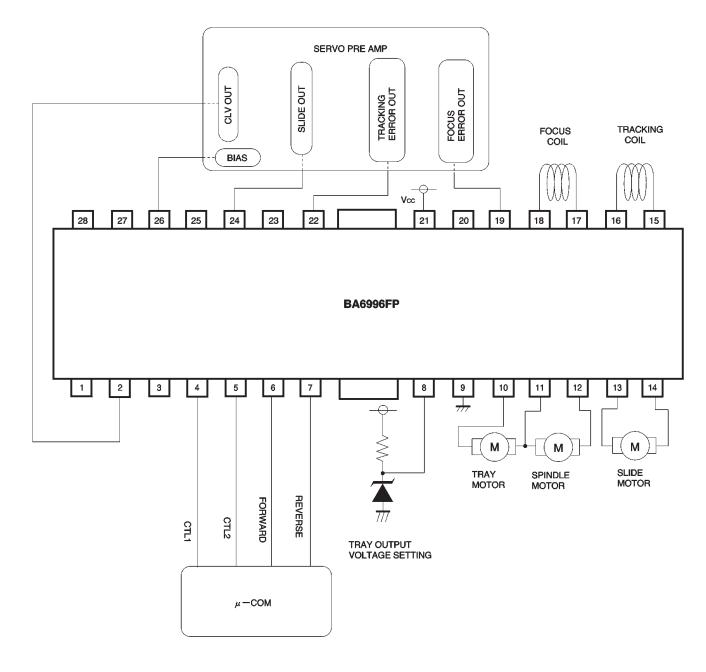
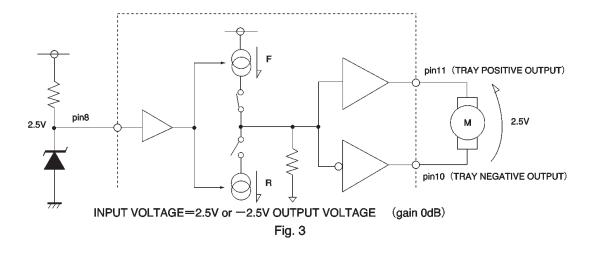



Fig.2

Operation notes

(1) Setting the tray motor driver voltage (forward mode)

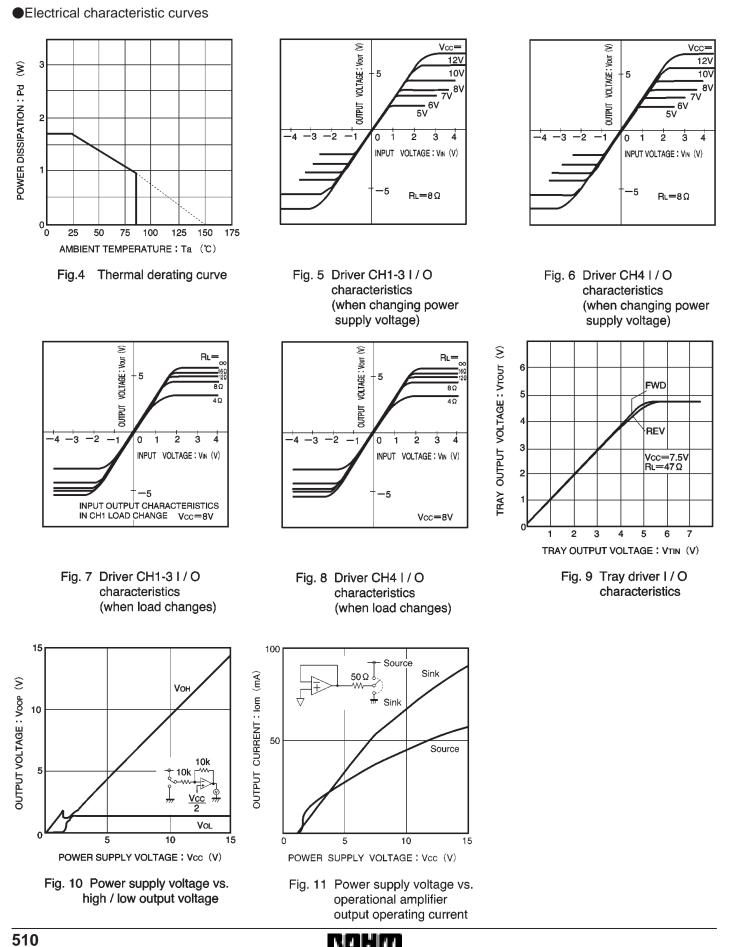
Note: The tray driver will not exceed the power supply's maximum output voltage, even if set above this maximum voltage (refer to the following page). The example above applies only when setting below the maximum output voltage. Maximum output voltage for the power supply can be output by pulling up the tray input pin (pin 8) or by connecting it to Vcc.

(2) Mute functions

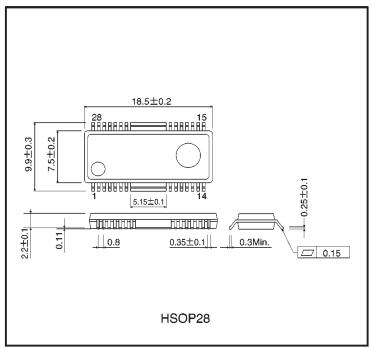
Mute function	Muted channels		
Thermal shutdown	All channels		
Muting during supply voltage drop	All channels		
Muting during bias voltage drop	channel1 to 4		

«Thermal shutdown»

The output current is muted when the chip temperature exceeds $175^{\circ}C$ (typically).


 \ll Supply voltage drop muting \gg

The internal circuits turn off when the supply voltage drops below 4.3V (typically), and turn on again when it rises above 4.5V (typically).


(3) Muting occurs during thermal shutdown and when the supply voltage or bias pin voltage drops. In each case, only the driver is muted. The output pin voltage during muting is the internal bias voltage, roughly $V_{CC}-VF/2$.

(4) Be sure to connect the IC to a 0.1μ F bypass capacitor to the power supply, at the base of the IC.

(5) Connect the radiating fin to an external ground.

External dimensions (Units: mm)

MEMO

