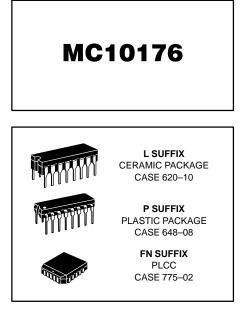
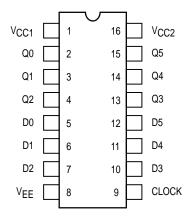

Hex D Master/Slave Flip-Flop

The MC10176 contains six high-speed, master slave type "D" flip-flops. Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive-going Clock transition. Thus, outputs may change only on a positive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device.


 $\begin{array}{l} \mathsf{P}_{\mathsf{D}} = 460 \text{ mW typ/pkg (No Load)} \\ \mathsf{f}_{\mathsf{toggle}} = 150 \text{ MHz (typ)} \\ \mathsf{t}_{\mathsf{r}}, \, \mathsf{t}_{\mathsf{f}} = 2.0 \text{ ns typ } (20\%\text{--}80\%) \end{array}$


CLOCKED TRUTH TABLE

С	D	Q _{n+1}
L	Х	Q _n
H*	L	L
H*	Н	Н

*A clock H is a clock transition from a low to a high state.

DIP PIN ASSIGNMENT

Pin assignment is for Dual–in–Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6–11 of the Motorola MECL Data Book (DL122/D).

MC10176

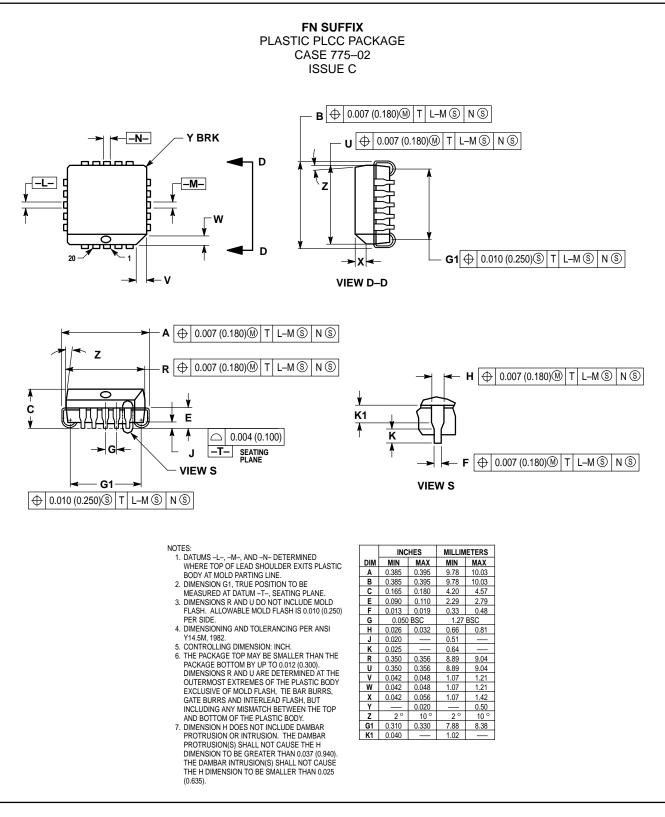
ELECTRICAL CHARACTERISTICS

			Test Limits							T
	Symbol	Pin Under Test	–30°C		+25°C			+85°C		1
Characteristic			Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	١E	8		121		88	110		121	mAdo
Input Current	l _{inH}	5 9		350 495			220 310		220 310	μAdc
	linL	5 9	0.5 0.5		0.5 0.5			0.3 0.3		μAdc
Output Voltage Logic 1	VOH	2† 15†	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Output Voltage Logic 0	VOL	2† 15†	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
Threshold Voltage Logic 1	VOHA	2† 15†	-1.080 -1.080		-0.980 -0.980			-0.910 -0.910		Vdc
Threshold Voltage Logic 0	VOLA	2† 15†		-1.655 -1.655			-1.630 -1.630		-1.595 -1.595	Vdc
Switching Times (50Ω Load) Clock Input										ns
Propagation Delay	t9+2+ t9+2–	2 2	1.6 1.6	4.6 4.6	1.6 1.6		4.5 4.5	1.6 1.6	5.0 5.0	
Rise Time (20 to 80%)	t ₂₊	2	1.0	4.1	1.1		4.0	1.1	4.4	
Fall Time (20 to 80%)	t2-	2	1.0	4.1	1.1		4.0	1.1	4.4	
Setup Time	^t setup	2	2.5		2.5			2.5		ns
Hold Time	^t hold	2	1.5		1.5			1.5		ns
Toggle Frequency (Max)	f _{tog}	2	125		125	150		125		MHz

 $\dagger \, \text{Output}$ level to be measured after a clock pulse has been applied to the C Input (Pin 9)

VILmin

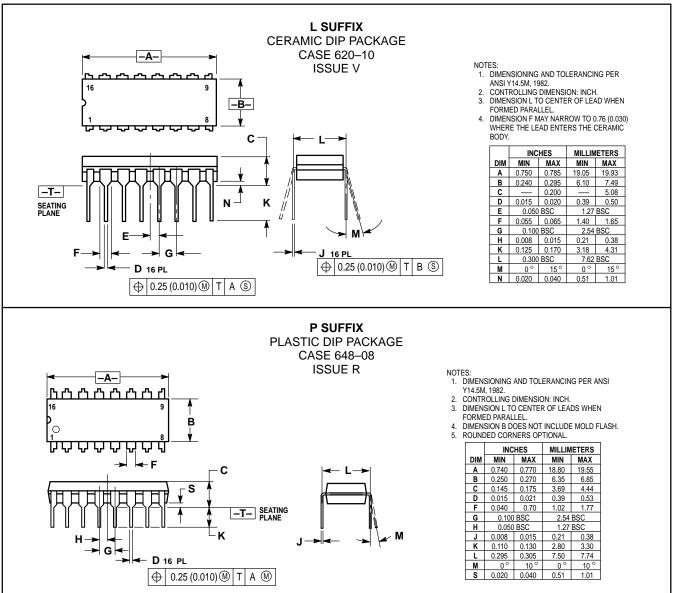
ELECTRICAL CHARACTERISTICS (continued)


				TEST VOLTAGE VALUES (Volts)						
		@ Test Te	mperature	VIHmax	V _{ILmin}	VIHAmin	VILAmax	VEE	1	
			–30°C	-0.890	-1.890	-1.205	-1.500	-5.2	1	
			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	1	
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1	
			Pin	TEST V						
Characte	Characteristic		Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	VEE	(V _{CC}) Gnd	
Power Supply Drain	Current	١E	8					8	1, 16	
Input Current		l _{inH}	5 9	5 9				8 8	1, 16 1, 16	
		l _{inL}	5 9		5 9			8 8	1, 16 1, 16	
Output Voltage	Logic 1	VOH	2† 15†	5 12				8 8	1, 16 1, 16	
Output Voltage	Logic 0	VOL	2† 15†		5 12			8 8	1, 16 1, 16	
Threshold Voltage	Logic 1	VOHA	2† 15†			5 12		8 8	1, 16 1, 16	
Threshold Voltage	Logic 0	VOLA	2† 15†				5 12	8 8	1, 16 1, 16	
Switching Times	(50 Ω Load)			+1.11Vdc	+0.31V	Pulse In	Pulse Out	–3.2 V	+2.0 V	
Clock Input	Propagation Delay	t9+2+ t9+2–	2 2			5, 9 5, 9	2 2	8 8	1, 16 1, 16	
Rise Time	(20 to 80%)	t2+	2			5, 9	2	8	1, 16	
Fall Time	(20 to 80%)	t2-	2			5, 9	2	8	1, 16	
Setup Time		^t setup	2			5, 9	2	8	1, 16	
Hold Time		thold	2			5, 9	2	8	1, 16	
Toggle Frequency (M	ax)	f _{tog}	2					8	1, 16	

† Output level to be measured after a clock pulse has been applied to the C Input (Pin 9)

VILmin

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.


OUTLINE DIMENSIONS

MOTOROLA

MC10176

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(Motorola**, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

 \diamond

