

7516 Central Industrial Drive Riviera Beach, Florida 33404 PHONE: (561) 842-0305 FAX: (561) 845-7813

APPLICATIONS:

- Drivers
- Switches
- Medium-Power Amplifiers

FEATURES:

- Low Saturation Voltage: 0.6 V_{CE(sat)} @ I_C = 1.0 Amp
- High Gain Characteristics: hFE @ I_C = 250 mA: 30-100
- Excellent Safe Area Limits
- Complementary to NPN 2N3767 (2N3741)

2N3741

Medium Power

PNP Transistors

TO-66

These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power switching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to 200°C permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability and long life.

ABSOLUTE MAXIMUM RATINGS:

SYMBOL	CHARACTERISTIC	VALUE	UNITS
V _{CEO} *	Collector-Emitter Voltage	80	Vdc
V _{EB} *	Emitter-Base Voltage	7.0	Vdc
V _{CB} *	Collector-Base Voltage	80	Vdc
Ic*	Peak Collector Current	10	Adc
Ic*	Continuous Collector Current	4.0	Adc
l _B *	Base Current	2.0	Adc
T _{STG} *	Storage Temperature	-65 to 200	°C
TJ*	Operating Junction Temperature	-65 to 200	°C
P _D *	Total Device Dissipation	25	Watts
	T _C = 25°C		
	Derate above 25°C	0.143	W/∘C
θJC	Thermal Impedance	7	°C/W

* Indicates JEDEC registered data.

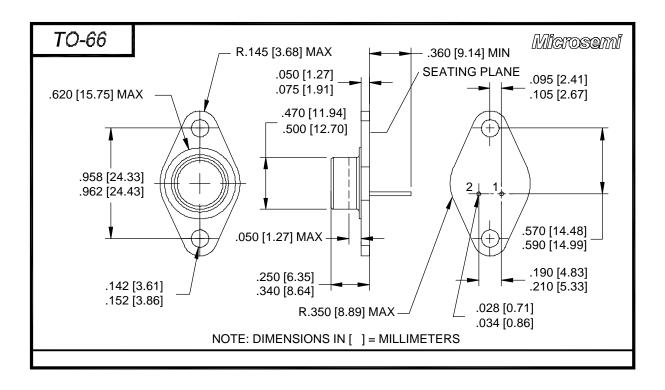
MSC1041.PDF 03-12-99

ELECTRICAL CHARACTERISTICS: (25°Case Temperature Unless Otherwise Noted)

Microsemi

Progress Powered by Technology

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	VAI	VALUE	
		TEST CONDITIONS		Max.	Units
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage	I _C = 100 mAdc, I _B = 0 (Note 1)	80		Vdc
I _{EB0*}	Emitter Base Cutoff Current	V _{EB} = 7.0 Vdc		0.5	mAdc
I _{CEX*}	Collector Cutoff Current	$V_{CE} = 80 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc}$		100	μAdc
		$V_{CE} = 60 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc}, T_{C} = 150^{\circ}\text{C}$		1.0	mAdc
I _{CEO} *	Collector-Emitter Cutoff Current	$V_{CE} = 60 \text{ Vdc}, \ I_B = 0$		1.0	mAdc
I _{CBO*}	Collector Base Cutoff Current	$V_{CB} = 80 \text{ Vdc}, I_E = 0$		100	μAdc
h _{FE} *	DC Current Gain (Note 1)	$I_{C} = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$	40		
		$I_{C} = 250 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$	30	100	
		$I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$	20		
		$I_{C} = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}$	10		
V _{CE(sat)} *	Collector-Emitter Saturation Voltage (Note 1)	$I_{\rm C}$ = 1.0 Adc, $I_{\rm B}$ = 125 mAdc		0.6	Vdc
V _{BE*}	Base-Emitter Voltage (Note 1)	$I_{C} = 250 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$		1.0	Vdc
f _T *	Current Gain Bandwidth Product	$I_{C} = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz}$	3.0		MHz
h _{fe} *	Small-Signal Current Gain	$I_{C} = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}$	25		
C _{ob*}	Common Base Output Capacitance	$V_{CB} = 10 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz}$		100	pF


Note 1: Pulse Test: PW \leq 300 μ s, Duty Cycle \leq 2.0%

* Indicates JEDEC registered data.

2N3741

PACKAGE MECHANICAL DATA:

