Bi-Quinary Counter

The MC10138 is a four bit counter capable of divide by two, five, or ten functions. It is composed of four set–reset master–slave flip–flops. Clock inputs trigger on the positive going edge of the clock pulse.

Set or reset input override the clock, allowing asynchronous "set" or "clear." Individual set and common reset inputs are provided, as well as complementary outputs for the first and fourth bits.

LOGIC DIAGRAM

S2

D1

C1 Q'

C2 Q

DIP PIN ASSIGNMENT

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

G

V_{CC1} = PIN 1; V_{CC2} = PIN 16; V_{EE} = PIN 8

V_{CC2}

Q0

Q0

Q1

C1

S0

S1

RESET

Q2

5

D1

D2

C2

Q1

13

G

S1

10

D1

D2 Q'

C2 Q

C2 7

V_{CC1}

Q3

Q3

Q2

S3

S2

C2

 V_{EE}

- $P_D = 370 \text{ mW typ/pkg}$ (No Load)
- $f_{tog} = 150 \text{ MHz typ}$

S0

11

D1

C1

R

12

Clock

9

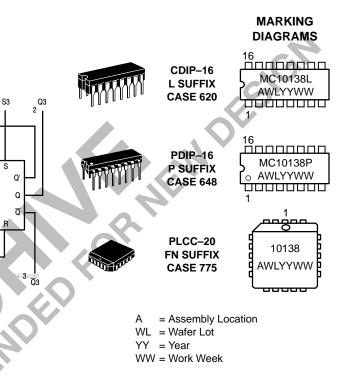
Reset

• $t_r, t_f = 2.5 \text{ ns typ} (20\% - 80\%)$

QO

15

Q


Q

14 . Q0

ON Semiconductor

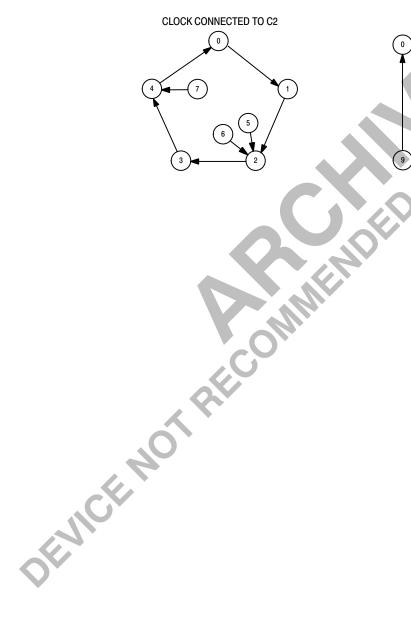
http://onsemi.com

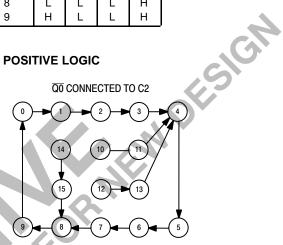
ORDERING INFORMATION

Device	Package	Shipping
MC10138L	CDIP-16	25 Units / Rail
MC10138P	PDIP-16	25 Units / Rail
MC10138FN	PLCC-20	46 Units / Rail

Pin assignment is for Dual–in–Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

Downloaded from Elcodis.com electronic components distributor


COUNTER TRUTH TABLES


BI–QUINARY (Clock connected to C2 BCD (Clock connected to C1

and $\overline{Q3}$ connected to C1)								
COUNT	OUNT Q1 Q2 Q3 Q							
0	L	L	L	L				
1	н	L	L	L				
2	L	Н	L	L				
3	Н	Н	L	L				
4	L	L	Н	L				
5	L	L	L	Н				
6	н	L	L	Н				
7	L	Н	L	Н				
8	Н	Н	L	Н				
9	L	L	Н	Н				

and Q0 connected to C2)								
COUNT	Q0	Q1	Q2	Q3				
0	L	L	L	L				
1	н	L	L	L				
2	L	н	L	L				
3	н	Н	L	L				
4	L	L	Н	L				
5	н	L	н	L				
6	L	н	н	L				
7	Н	Н	Н	L				
8	L	L	L	Н				

COUNTER STATE DIAGRAM — POSITIVE LOGIC

http://onsemi.com 2

ELECTRICAL CHARACTERISTICS

	Test Limits									
		Pin Under	-30	D∘C		+25°C		+8	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Cur- rent	Ι _Ε	8		97		70	88		97	mAdc
Input Current	l _{inH}	12 5,6,10,11 7 9		350 390 460 650			220 245 290 410		220 245 290	μAdc
	I _{inL}	All	0.5		0.5			0.3		μAdc
Output Voltage Logic 1	V _{OH}	3,14 (3.) 2,4,13,15 (2.)	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Output Voltage Logic 0	V _{OL}	3,14 (2.) 2,4,13,15 (3.)	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
Threshold Voltage Logic 1	V _{OHA}	2,4,13,15 (2.) 3,14 (3.) 13,15 (2.)	-1.080 -1.080 -1.080		-0.980 -0.980 -0.980			-0.910 -0.910 -0.910	S.	Vdc
Threshold Voltage Logic 0	V _{OLA}	2,4,13,15 (3.) 3,14 (2.) 13,15 (3.)		-1.655 -1.655 -1.655			-1.630 -1.630 -1.630	2	-1.595 -1.595 -1.595	Vdc
Switching Times (50Ω Load)							S.			ns
Propagation Clock Delays Delay	t ₁₂₊₁₅₊ t ₁₂₊₁₄₊ t ₇₊₁₃₊ t ₇₊₂₊ t ₇₊₂₊ t ₇₊₃₊	15 14 13 4 2 3	1.4 1.4 1.4 1.4 1.4 1.4	5.0 5.0 5.2 5.2 5.2 5.2 5.2	1.5 1.5 1.5 1.5 1.5 1.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5	4.8 4.8 5.0 5.0 5.0 5.0 5.0	1.5 1.5 1.5 1.5 1.5 1.5	5.3 5.3 5.5 5.5 5.5 5.5	
	t ₁₂₊₁₅₋ t ₁₂₊₁₄₋ t ₇₊₁₃₋ t ₇₊₄₋ t ₇₊₂₋ t ₇₊₃₋	15 14 13 4 2 3	1.4 1.4 1.4 1.4 1.4 1.4	5.0 5.0 5.2 5.2 5.2 5.2 5.2	1.5 1.5 1.5 1.5 1.5 1.5 1.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5	4.8 4.8 5.0 5.0 5.0 5.0	1.5 1.5 1.5 1.5 1.5 1.5	5.3 5.3 5.5 5.5 5.5 5.5 5.5	
Set Delay	t ₁₁₊₁₅₊ t _{11+14–}	15 14	1.4 1.4	5.2 5.2	1.5 1.5		5.0 5.0	1.5 1.5	5.5 5.5	
Reset Delay	t ₉₊₁₄₊ t _{9+15–}	14 15	1.4 1.4	5.2 5.2	1.5 1.5		5.0 5.0	1.5 1.5	5.5 5.5	
Rise Time (20 to 80%)	t ₁₄₊ t ₁₅₊	14 15	1.1 1.1	4.7 4.7	1.1 1.1	2.5 2.5	4.5 4.5	1.1 1.1	5.0 5.0	
Fall Time (20 to 80%)	t ₁₄₋ t ₁₅₋	14 15	1.1 1.1	4.7 4.7	1.1 1.1	2.5 2.5	4.5 4.5	1.1 1.1	5.0 5.0	
Counting Frequency	f _{count}	2 15	125 125		125 125	150 150		125 125		MHz

Individually test each input; apply V_{ILmin} to pin under test.
Set all four flips by applying pulse.

2. Set all four flip-flops by applying pulse

3. Reset all four flip-flops by applying pulse

VILmin VILmin

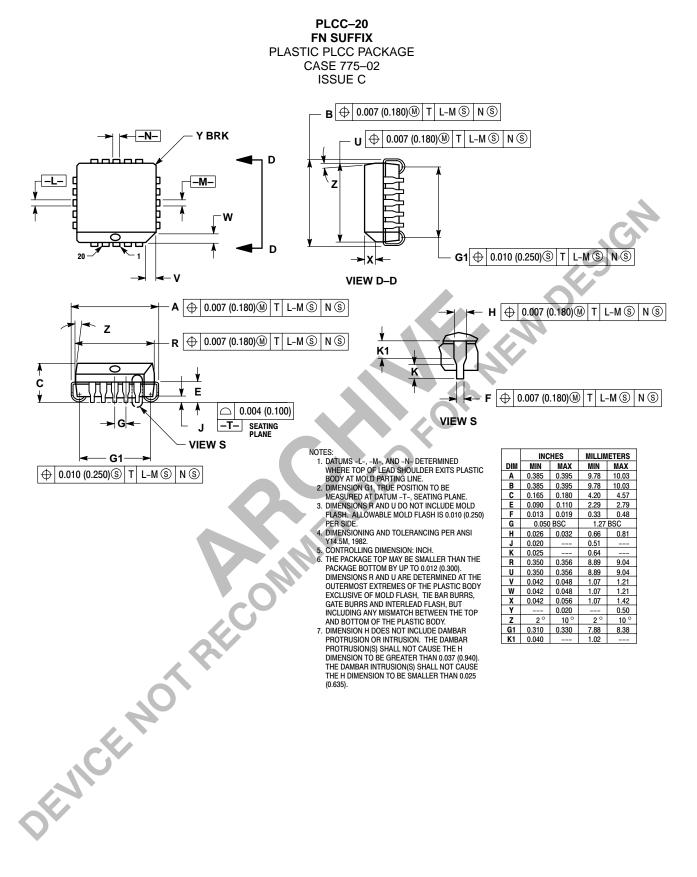
VILmin

to pins 5, 6, 10, and 11 prior to applying test voltage indicated.

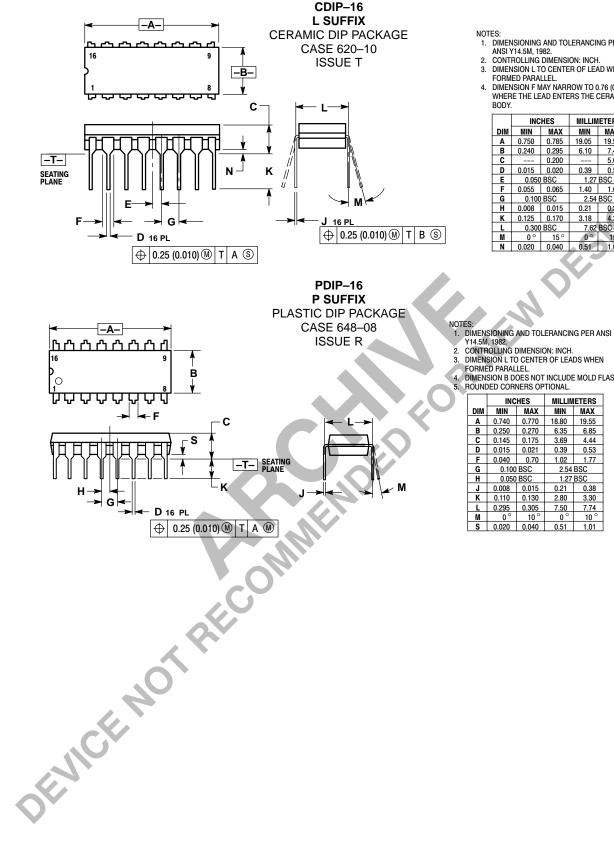
to pin 9 prior to applying test voltage indicated.

ELECTRICAL CHARACTERISTICS (continued)

NOTE: Each MECL 10,000 series circuit has been designed to meet the dc specifications			TEST VOLTAGE VALUES (Volts)					
shown in the test table, after thermal equilibrium has been established. The circuit	@ Test Temperature −30°C +25°C +85°C		V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	/ _{ILAmax} V _{EE}	
s in a test socket or mounted on a printed circuit board and transverse air flow greater			-0.890	-1.890	-1.205	-1.500	-5.2	
han 500 linear fpm is maintained. Outputs are erminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one			-0.810	-1.850	-1.105	-1.475	-5.2	
gate. The other gates are tested in the same nanner.			-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin	TEST V	OLTAGE AP	PLIED TO P	INS LISTED	BELOW	
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC} Gnd
Power Supply Drain Current	Ι _Ε	8	9				8	1, 16
Input Current	I _{inH}	12 5,6,10,11	12 5,6,10,11				8 8	1, 16 1, 16
		7 9	7 9				8 8	1, 16
·	I _{inL}	All		Note 1.			8	1, 16
Output Voltage Logic 1	V _{OH}	3,14 (3.) 2,4,13,15 (2.)	9 5,6,10,11				8 8	1, 16 1, 16
Output Voltage Logic 0	V _{OL}	3,14 (2.) 2,4,13,15 (3.)	5,6,10,11 9				8 8	1, 16 1, 16
Threshold Voltage Logic 1	V _{OHA}	2,4,13,15 (2.)			5,6,10,11		8	1, 16
		3,14 (3.) 13,15 (2.)			9 7,12		8 8	1, 16 1, 16
Threshold Voltage Logic 0	V _{OLA}	2,4,13,15 (3.)				5,6,10,11	8	1, 16
		3,14 (2.) 13,15 (3.)			6	9 7,12	8 8	1, 16 1, 16
Switching Times (50Ω Load)					Pulse In	Pulse Out	–3.2 V	+2.0
Propagation Delay Clock Delays	t ₁₂₊₁₅₊	15			12	15	8	1, 16
	t ₁₂₊₁₄₊ t ₇₊₁₃₊	14 13			12 7	14 13	8 8	1, 16 1, 16
	t ₇₊₁₃₊	4			7	4	8	1, 16
	t ₇₊₂₊	2			7	2	8	1, 16
	t ₇₊₃₊	3			7	3	8	1, 16
	t ₁₂₊₁₅₋	15			12	15	8	1, 16
	t ₁₂₊₁₅ -	14			12	14	8	1, 16
	t ₇₊₁₃₋	13			7	13	8	1, 16
	t ₇₊₄₋	4			7	4	8	1, 16
	t ₇₊₂₋	2			7	2	8	1, 16
	t ₇₊₃₋	3			7	3	8	1, 16
Set Delay	t ₁₁₊₁₅₊ t ₁₁₊₁₄₋	15 14			11 11	15 14	8 8	1, 16 1, 16
Reset Delay	t ₉₊₁₄₊	14			9	14	8	1, 16
Rise Time (20 to 80%)	t ₉₊₁₅₋	15 14			9 11	15 14	8	1, 16
Nise IIIIle (20 to 80%)	t ₁₄₊ t ₁₅₊	14 15			11 11	14 15	8 8	1, 16 1, 16
Fall Time (20 to 80%)	t _{14–} t _{15–}	14 15			9 9	14 15	8 8	1, 16 1, 16
			1					1, 16


3. Reset all four flip-flops by applying pulse

V_{IHmax} V_{ILmin}


http://onsemi.com 4

to pin 9 prior to applying test voltage indicated.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
DIMENSION L TO CENTER OF LEAD WHEN FOOMED DRAWLES

DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL.
DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INC	HES	MILLIN	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.750	0.785	19.05	19.93		
В	0.240	0.295	6.10	7.49		
С		0.200		5.08		
D	0.015	0.020	0.39	0.50		
Е	0.050	BSC	1.27	BSC		
F	0.055	0.065	1.40	1.65		
G	0.100	BSC	2.54	BSC		
Н	0.008	0.015	0.21	0.38		
κ	0.125	0.170	3.18	4.31		
L	0.300	BSC	7.62	7.62 BSC		
М	0 °	15 °	0 °	15°		
Ν	0.020	0.040	0.51	1.01		

10

1.01

				R OF LEA	DS WHEN	
		ed Paral			E MOLD F	
		DED CORI				
		INC	HES	MILLIN	IETERS	
	DIM	MIN	MAX	MIN	MAX	
	Α	0.740	0.770	18.80	19.55	
	В	0.250	0.270	6.35	6.85	
	C	0.145	0.175	3.69	4.44	
	D	0.015	0.021	0.39	0.53	
	F	0.040	0.70	1.02	1.77	
	G	0.100	BSC	2.54	BSC	
	Н	0.050	BSC	1.27	BSC	
M	J	0.008	0.015	0.21	0.38	
	K	0.110	0.130	2.80	3.30	
	L	0.295	0.305	7.50	7.74	
	М	0°	10 °	0 °	10 °	

Notes

DEWICE NOT RECOMMENDED FOR MENDESIGN

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

SRNEW DESIGN

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.