
+2 Divider

The MC100LVEL32 is an integrated ÷2 divider. The differential clock inputs and the VBB allow a differential, single-ended or AC coupled interface to the device. If used, the V_{BB} output should be bypassed to ground with a 0.01μ F capacitor. Also note that the VBB is designed to be used as an input bias on the LVEL32 only, the VBB output has limited current sink and source capability. The LVEL32 is functionally identical to the EL32, but operates from a low voltage supply.

The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flop will attain a random state; the reset allows for the synchronization of multiple EL32's in a system.

- 510ps Propagation Delay
- 3.0GHz Toggle Frequency
- High Bandwidth Output Transitions
- 75kΩ Internal Input Pulldown Resistors
- >1000V ESD Protection

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

ON Semiconductor

http://onsemi.com

D SUFFIX CASE 751

MARKING DIAGRAM

8дддд		
	A	= Ass
KVL32	L	= Waf
⊖ ^{ALYW}	Y	= Yea
18888	W	= Wor

embly Location fer Lot

۱r

rk Week

*For additional information, see Application Note AND8002/D

PIN DESCRIPTION

PIN	FUNCTION
CLK	Clock Inputs
Reset	Asynch Reset
VBB	Ref Voltage Output
Q	Data Ouputs

ORDERING INFORMATION

Device	Package	Shipping				
MC100LVEL32D	SO–8	98 Units/Rail				
MC100LVEL32DR2	SO–8	2500 Tape & Reel				

Downloaded from Elcodis.com electronic components distributor

		-40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit									
IEE	Power Supply Current		25			25			25			25		mA
VEE	Power Supply Voltage		-3.0		-3.0	-3.3	-3.8	-3.0	-3.3	-3.8	-3.0	-3.3	-3.8	V
V _{BB}	Output Reference Voltage	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
ЧΗ	Input HIGH Current			150			150			150			150	μA

DC CHARACTERISTICS ($V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$; $V_{CC} = GND$)

AC CHARACTERISTICS ($V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$; $V_{CC} = GND$)

		–40°C		O°C			25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Max	Unit
fMAX	Maximum Toggle Frequency		3.0			3.0			3.0			3.0		GHz
^t PLH ^t PHL	Propagation Delay CLK to Q (Diff) CLK to Q (S.E.) Reset to Q	350 300 340	500 500 540	530 580 540	360 310 350	500 500 540	540 590 550	370 320 350	510 510 540	550 600 550	410 360 380	540 540 550	590 640 580	ps
VPP	Minimum Input Swing ¹	150			150			150			150			mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)		225			225			225			225		ps

1. Minimum input swing for which AC parameters are guaranteed.

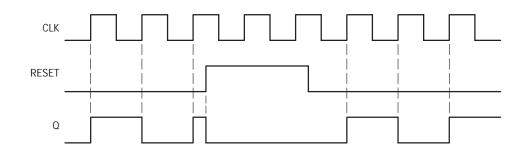
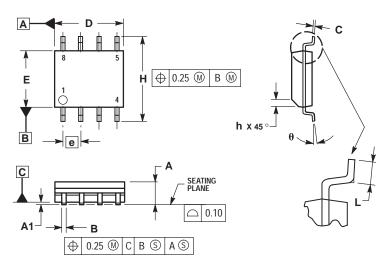



Figure 1. Timing Diagram

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-06 **ISSUE T**

 NOTES:
DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
DIMENSIONS ARE IN MILLIMETER.
DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
DIMENSION BOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. CONDITION.

	MILLIMETERS						
DIM	MIN	MAX					
Α	1.35	1.75					
A1	0.10	0.25					
В	0.35	0.49					
С	0.19	0.25					
D	4.80	5.00					
Ε	3.80	4.00					
е	1.27	BSC					
Н	5.80	6.20					
h	0.25	0.50					
L	0.40	1.25					
θ	0° 7						

ON Semiconductor and **ON Semiconductor** and products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

- French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.