MC100EP210S

2.5V 1:5 Dual Differential LVDS Compatible Clock Driver

Description

The MC100EP210S is a low skew 1 -to-5 dual differential driver, designed with LVDS clock distribution in mind. The LVDS or LVPECL input signals are differential and the signal is fanned out to five identical differential LVDS outputs.

The EP210S specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device.

Two internal 50Ω resistors are provided across the inputs. For LVDS inputs, VTA and VTB pins should be unconnected. For LVPECL inputs, VTA and VTB pins should be connected to the V_{TT} ($\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$) supply.

Designers can take advantage of the EP210S performance to distribute low skew LVDS clocks across the backplane or the board.

Features

- 20 ps Typical Output-to-Output Skew
- 85 ps Typical Device-to-Device Skew
- 550 ps Typical Propagation Delay
- The 100 Series Contains Temperature Compensation
- Maximum Frequency > 1 GHz Typical
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- Internal 50Ω Input Termination Resistors
- LVDS Input/Output Compatible
- $\mathrm{Pb}-$ Free Packages are Available*

$$
\begin{aligned}
& \text { XXX }=10 \text { or } 100 \\
& \mathrm{~A}=\text { Assembly Location } \\
& \mathrm{WL}, \mathrm{~L}=\text { Wafer Lot } \\
& \mathrm{YY}, \mathrm{Y}=\text { Year } \\
& \text { WW, W }=\text { Work Week } \\
& \mathrm{G}=\text { Pb-Free Package } \\
& \text { *For additional marking information, refer to } \\
& \text { Application Note AND8002/D. }
\end{aligned}
$$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Warning: All V_{CC} and $\mathrm{V}_{\text {EE }}$ pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 32-Lead LQFP Pinout (Top View)

Table 1. PIN DESCRIPTION

PIN	FUNCTION
CLKn, CLKn	LVDS, LVPECL CLK Inputs* ${ }^{*}$
Qn0:4, Qn0:4	LVDS Outputs
VTA	50Ω Termination Resistors
VTB	50Ω Termination Resistors
$\mathrm{V}_{\text {CC }}$	Positive Supply
$\mathrm{V}_{\text {EE }}$	Ground
EP for QFN-32, only	The Exposed Pad (EP) on the QFN-32 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat- sinking conduit. The pad is electrically connected to $\mathrm{V}_{\text {EE. }}$

*Under open or floating conditions with input pins converging to a common termination bias voltage the device is susceptible to auto oscillation.

Figure 2. Logic Diagram

MC100EP210S

Table 2. ATTRIBUTES

Characteristics	Value	
ESD ProtectionHuman Body Model Machine Model Charged Device Model	$\begin{gathered} >2 \mathrm{kV} \\ >100 \mathrm{~V} \\ >2 \mathrm{kV} \end{gathered}$	
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg
LQFP-32 QFN-32	Level 2	Level 2 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
Transistor Count	461 Devices	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test		

1. For additional information, refer to Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		6	V
V_{EE}	Power Supply (GND)	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$		-6	V
V_{1}	LVDS, LVPECL Input Voltage	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	$\mathrm{V}_{1} \leq \mathrm{V}_{\text {CC }}$	6	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & 32 \text { LQFP } \\ & 32 \text { LQFP } \end{aligned}$	$\begin{aligned} & 80 \\ & 55 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	32 LQFP	12 to 17	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & \text { QFN-32 } \\ & \text { QFN-32 } \end{aligned}$	$\begin{aligned} & 31 \\ & 27 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	2S2P	QFN-32	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave SolderPb $\mathrm{Pb}-\mathrm{Free}$			$\begin{aligned} & 265 \\ & 265 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Table 4. DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 2)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		150	200		150	200		150	200	mA
V_{OH}	Output HIGH Voltage (Note 3)	1250	1400	1550	1250	1400	1550	1250	1400	1550	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 3)	800	950	1100	800	950	1100	800	950	1100	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	1.2		2.5	1.2		2.5	1.2		2.5	V
R_{T}	Internal Termination Resistor	43		57	43	50	57	43		57	Ω
I_{H}	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	$\begin{array}{lr}\text { Input LOW Current } & \text { CLK } \\ & \text { CLK }\end{array}$	$\begin{aligned} & \hline-150 \\ & -150 \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline-150 \\ & -150 \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline-150 \\ & -150 \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
2. Input and output parameters vary $1: 1$ with $V_{C C}$.
3. All loading with 100Ω across LVDS differential outputs.
4. $\mathrm{V}_{I H C M R}$ min varies $1: 1$ with V_{EE}, $\mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.375$ to $2.625 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 5$)$

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$f_{\text {maxLVDS/ }}$ LVPECL	Maximum Frequency (See Figure 2. $\mathrm{F}_{\text {max }} /$ JITTER)		> 1			> 1			> 1		GHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay	425	525	625	450	550	650	475	575	675	ps
$\mathrm{t}_{\text {skew }}$	Within-Device Skew (Note 6) Device-to-Device Skew (Note 7) Duty Cycle Skew (Note 8)		20 85 80	$\begin{gathered} 25 \\ 160 \\ 100 \end{gathered}$		20 85 80	$\begin{gathered} \hline 25 \\ 160 \\ 100 \end{gathered}$		20 85 80	$\begin{gathered} \hline 35 \\ 160 \\ 100 \end{gathered}$	ps
$\mathrm{t}_{\text {JITTER }}$	RMS Random Clock Jitter		0.2	< 1		0.2	<1		0.2	< 1	ps
VPP	Minimum Input Swing	150	800	1200	150	800	1200	150	800	1200	mV
$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Time (20\%-80\%)	50	130	200	75	150	225	80	160	230	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Measured with 400 mV source, 50% duty cycle clock source. All loading with 100Ω across differential outputs.
6. Skew is measured between outputs under identical transitions of similar paths through a device.
7. Device-to-Device skew for identical transitions at identical V_{CC} levels.
8. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output.

Figure 2. $F_{\text {max }}$

Figure 3. Typical Termination for Output Driver and Device Evaluation

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC100EP210SFA	LQFP-32	250 Units / Tray
MC100EP210SFAG	LQFP-32 (Pb-Free)	250 Units / Tray
MC100EP210SFAR2	LQFP-32	$2000 /$ Tape \& Reel
MC100EP210SFAR2G	LQFP-32 (Pb-Free)	$2000 /$ Tape \& Reel
MC100EP210SMNG	QFN-32 (Pb-Free)	72 Units / Tray
MC100EP210SMNR4G		$1000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC100EP210S

PACKAGE DIMENSIONS

32 LEAD LQFP
CASE 873A-02
ISSUE B

PACKAGE DIMENSIONS

QFN32 5*5*1 0.5 P
CASE 488AM-01
ISSUE O

NOTES:

1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
TERMINAL AND IS MEASURED BETWEEN
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	NOM	MAX
A	0.800	0.900	1.000
A1	0.000	0.025	0.050
A3	0.200 REF		
b	0.180	0.250	0.300
D	5.00 BSC		
D2	2.950	3.100	3.250
E	5.00 BSC		
E2	2.950	3.100	3.250
e	0.500 BSC		
K	0.200	---	
L	0.300	0.400	0.500

BOTTOM VIEW

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

