SSTV16859 Dual Output 13-Bit Register with SSTL-2 Compatible I/O and Reset

General Description

U.com The SSTV16859 is a dual output 13-bit register designed for use with 184 and 232 pin DDR-1 memory modules. The device has a differential input clock, <u>SSTL-2</u> compatible data inputs and a LVCMOS compatible <u>RESET</u> input. The device has been designed to meet the JEDEC DDR module register specifications.

The device has been fabricated on an advanced submicron CMOS process and is designed to operate at power supplies of less than 3.6V's.

Features

Compliant with DDR-I registered module specifications
 Operates at 2.5V \pm 0.2V V_{DD}

March 2001

Revised July 2002

- SSTL-2 compatible input structure
- SSTL-2 compliant output structure
- Differential SSTL-2 compatible clock inputs
- Low power mode when device is reset
- Industry standard 64 pin TSSOP package
 Also packaged in plastic Fine-Pitch Ball Grid Array
- (FBGA)

Ordering Code:

Order Number	Package Number	Package Description
SSTV16859G (Note 1)(Note 2)	BGA96A	96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
SSTV16859MTD (Note 2)	MTD64	64-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 1: Ordering code "G" indicates Trays.

Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 2002 Fairchild Semiconductor Corporation DS500414

SSTV16859

Connection Diagrams

Pin A	ssignme	nt for TS	SOP
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	64 63 62 61 60 59 58 57 56 55 54 53 52 51 51 50 49 48 47 46 45 443 42 41 40 399 388 376 355 34 33 33 34 33 33 34 33 33 34 33 33 34 33 33 34 33 33 35 34 33 33 34 33 35 34 33 33 34 33 35 34 33 35 34 33 35 34 33 35 34 33 33 34 33 35 34 33 35 34 33 34 33 35 34 33 35 34 33 35 34 35 34 35 34 35 34 35 34 35 35 34 <t< td=""><td> VDDQ GND D13 D12 VDD VDDQ GND D11 D9 GND D8 D7 RESET GND CK VDDQ VREF GND CK VDDQ VREF GND D4 D3 GND QND VDQ D2 D1 GND QD2 D1 GND VDQ VDQ VDQ VDQ VDQ VDQ QND <!--</td--></td></t<>	 VDDQ GND D13 D12 VDD VDDQ GND D11 D9 GND D8 D7 RESET GND CK VDDQ VREF GND CK VDDQ VREF GND D4 D3 GND QND VDQ D2 D1 GND QD2 D1 GND VDQ VDQ VDQ VDQ VDQ VDQ QND <!--</td-->
Pin /	-	ent for FE	
T R P N M L K J H G F E D C B A			000000000000000000000000000000000000000

(Top Thru View)

Pin Descriptions

Pin Name	Description
Q _{1A} -Q _{13A}	SSTL-2 Compatible Register Outputs
Q _{1B} -Q _{13B}	
D ₁ -D ₁₃	SSTL-2 Compatible Register Inputs
RESET	Asynchronous LVCMOS Reset Input
СК	Positive Master Clock Input
CK	Negative Master Clock Input
V _{REF}	Voltage Reference Pin for SSTL level inputs
V _{DDQ}	Power Supply Voltage for Output Signals
V _{DD}	Power Supply Voltage for Inputs
NC	Electrically Isolated No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	NC	NC	NC	NC	NC	NC
В	Q _{12A}	Q _{13A}	GND	GND	NC	NC
С	Q _{10A}	Q _{11A}	GND	GND	NC	NC
D	Q _{8A}	Q _{9A}	V_{DDQ}	V _{DDQ}	D ₁₃	D ₁₂
Е	Q _{6A}	Q _{7A}	V_{DDQ}	V _{DD}	D ₁₁	D ₁₀
F	Q _{4A}	Q _{5A}	V_{DDQ}	V _{DD}	D ₉	D ₈
G	Q _{2A}	Q_{3A}	GND	GND	D ₇	RESET
н	Q _{1A}	Q _{13B}	GND	GND	NC	CK
J	Q _{12B}	Q _{11B}	GND	V _{REF}	NC	СК
к	Q _{10B}	Q _{9B}	V_{DDQ}	V _{DD}	NC	NC
L	Q _{8B}	Q _{7B}	V_{DDQ}	V _{DD}	D_5	D ₆
м	Q _{6B}	Q _{5B}	V _{DDQ}	V_{DDQ}	D_3	D ₄
N	Q _{4B}	Q_{3B}	GND	GND	D ₁	D ₂
Р	Q _{2B}	Q _{1B}	GND	GND	NC	NC
R	NC	NC	NC	NC	NC	NC
т	NC	NC	NC	NC	NC	NC

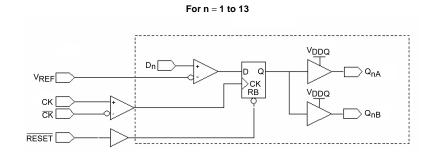
Truth Table

RESET	D _n	СК	СК	Q _n
L	X or Floating	X or Floating	X or Floating	L
Н	L	↑	\downarrow	L
Н	Н	↑	\downarrow	Н
Н	Х	L	Н	Q _{n-1}
Н	Х	Н	L	Q _{n-1}

L = Logic LOW H = Logic HIGH X = Don't Care but not floating unless noted<math display="block">L = LOW-bHIGH Clock Transition L = HIGH-to-LOW Clock Transition

 $\textbf{Q}_{n-1} = \textbf{Output}$ Remains in Previously Clocked State

Functional Description


The SSTV16859 is a 13-bit dual register with SSTL-2 compatible inputs and outputs. Input data is transferred to output data on the rising edge of the differential clock pair. When the RESET signal is asserted LOW all outputs are placed into the LOW logic state and all input comparators are disabled for power savings. Output glitches are prevented by disabling the internal registers more quickly than the input comparators. When RESET is removed, the system designer must insure the clock and data inputs to the

device are stable during the rising transition of the $\overline{\text{RESET}}$ signal. The SSTL-2 data inputs transition based on the value of

 V_{REF} . V_{REF} is a stable system reference used for setting the trip point of the input buffers of the SSTV16859 and other SSTL-2 compatible devices.

The $\overline{\text{RESET}}$ signal is a standard CMOS compatible input and is not referenced to the V_{REF} signal.

Logic Diagram

Absolute Maximum Ratings(Note 3)

;	Supply Voltage (V _{DDQ})	-0.5V to +3.6V	
	Supply Voltage (V _{DD})	-0.5V to +3.6V	
	Reference Voltage (V _{REF})	-0.5V to +3.6V	
	Input Voltage (V _I)	-0.5V to V _{DD} +0.5V	
	Output Voltage (V _O)		
	Outputs Active (Note 4)	-0.5V to V _{DDQ} + 0.5V	
	DC Input Diode Current (I _{IK})		
	$V_{I} < 0V$	–50 mA	
	$V_I > V_{DD}$	+50 mA	
	DC Output Diode Current (I _{OK})		
	V _O < 0V	–50 mA	
	$V_{O} > V_{DDQ}$	+50 mA	
	DC Output Source/Sink Current		
	(I _{OH} /I _{OL})	±50 mA	
	DC V _{DD} or Ground Current		
	per Supply Pin (I _{DD} or Ground)	±100 mA	
;	Storage Temperature Range (T _{stg})	$-65^{\circ}C$ to $+150^{\circ}C$	
	ESD (Human Body Model)	≥ 7000V	

Recommended Operating Conditions (Note 5)	9
Power Supply (V _{DDQ})	2.3V to 2.7V
Power Supply (V _{DD})	
Operating Range	V_{DDQ} to 2.7V
Reference Supply	
$(V_{REF} = V_{DDQ}/2)$	1.15 to 1.35
Termination Voltage (V _{TT})	$V_{REF} \pm 40 \text{ mV}$
Input Voltage	0 to V _{DD}
Output Voltage (V _O)	
Output in Active States	0V to V _{DDQ}
Output Current I _{OH} /I _{OL}	
$V_{DD} = 2.3V$ to 2.7V	±20 mA
Free Air Operating Temperature (T _A)	$0^{\circ}C$ to $+70^{\circ}C$
Note 3: The "Absolute Maximum Ratings" are those	values beyond which

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: IO Absolute Maximum Rating must be observed.

Note 5: The $\overrightarrow{\text{RESET}}$ input of the device must be held at V_{DD} or GND to ensure proper device operation. The differential inputs must not be floating, unless $\overrightarrow{\text{RESET}}$ is asserted LOW.

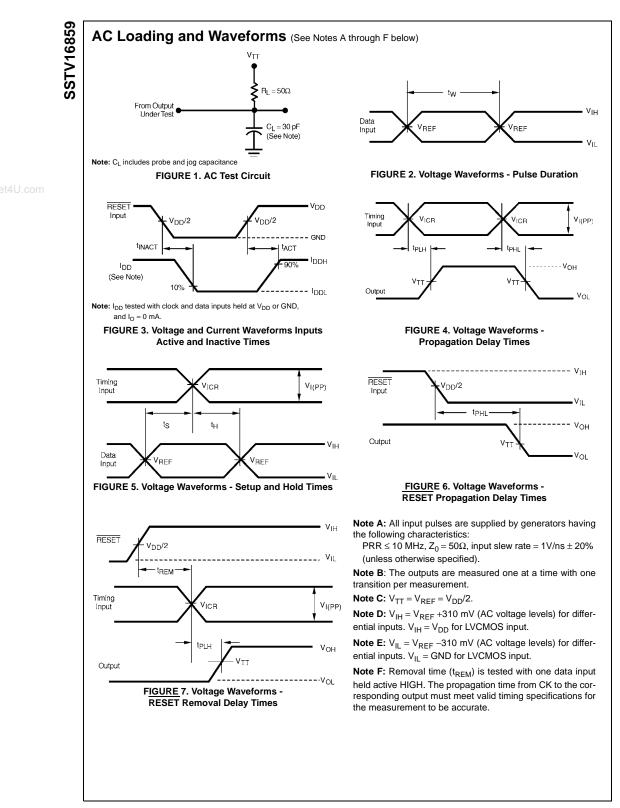
DC Electrical Characteristics (2.3V \leq V_{DD} \leq 2.7V)

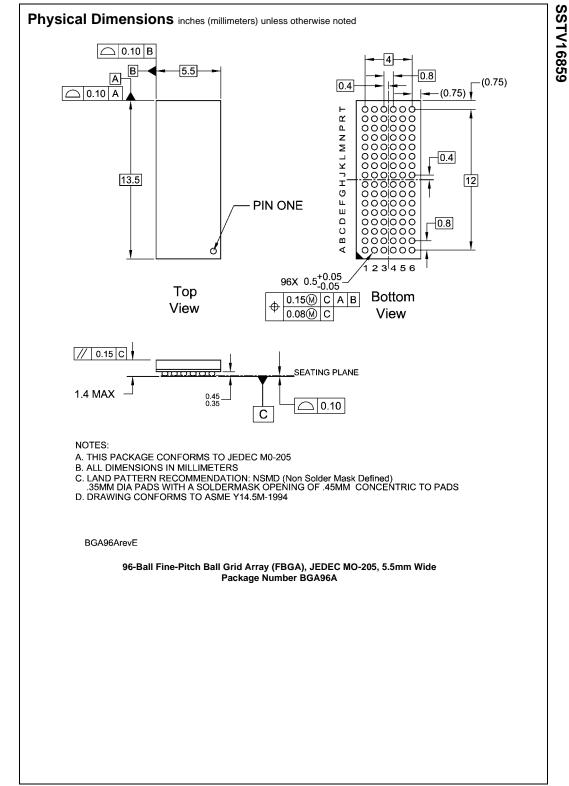
Symbol	Parameter	Conditions	V _{DD} (V)	Min	Тур	Max	Units
V _{IKL}	Input LOW Clamp Voltage	I _I = -18 mA	2.3			-1.2	V
V _{IKH}	Input HIGH Clamp Voltage	I _I = +18 mA	2.3	1		3.5	V
V _{IH-AC}	AC HIGH Level Input Voltage	Data Inputs		V _{REF} +310mV			V
V _{IL-AC}	AC LOW Level Input Voltage	Data Inputs				V _{REF} -310mV	V
V _{IH-DC}	DC HIGH Level Input Voltage	Data Inputs		V _{REF} +150mV			V
V _{IL-DC}	DC LOW Level Input Voltage	Data Inputs				V _{REF} -150mV	V
V _{IH}	HIGH Level Input Voltage	RESET		1.7			V
V _{IL}	LOW Level Input Voltage	RESET				0.7	V
VICR	Common Mode Input Voltage Range	CK, CK		0.97		1.53	V
V _{I(PP)}	Peak to Peak Input Voltage	CK, CK		360			mV
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 to 2.7	V _{DD} - 0.2			V
		I _{OH} = -16 mA	2.3	1.95			v
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 to 2.7	1		0.2	V
		I _{OL} = 16 mA	2.3			0.35	v
l	Input Leakage Current	$V_I = V_{DD}$ or GND	2.7			±5.0	μΑ
I _{DD}	Static Standby	$\overline{\text{RESET}} = \text{GND}, I_{O} = 0$				10	μΑ
	Static Operating	$\overline{RESET} = V_{DD}, I_O = 0$	2.7			05	
		$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$				25	mA
DDD	Dynamic Operating Current	$\overline{\text{RESET}} = V_{DD}, I_O = 0$					
	Clock Only	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$				120	μA/MH
		CK, CK Duty Cycle 50%					
	Dynamic Operating Current	$\overline{RESET} = V_{DD}, I_O = 0$	2.7				
	per Data Input	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$	2.1				
		CK, CK Duty Cycle 50%				15	μA/MH
		Data Input = 1/2 Clock					
		Rate 50% Duty Cycle					

www.fairchildsemi.com

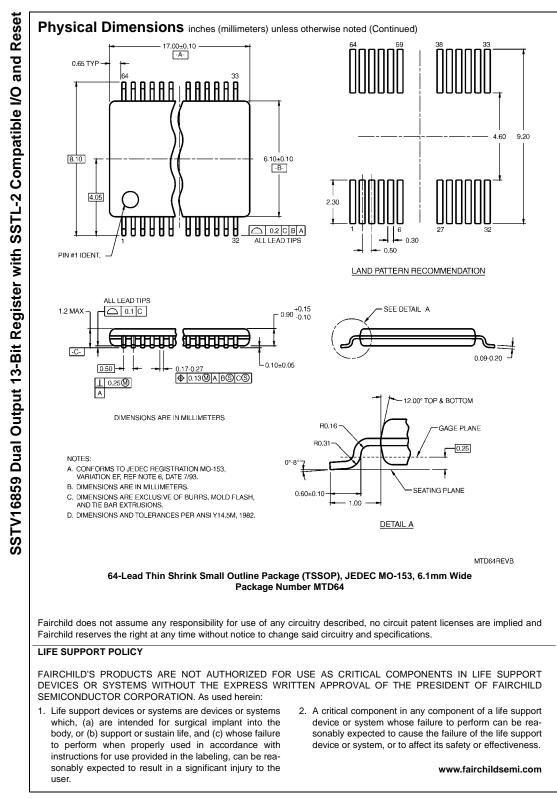
4

DC Electrical Characteristics (Continued)


Symbol	Parameter	Conditions	V _{DD} (V)	Min	Тур	Max	Units
R _{OH}	Output HIGH On Resistance	I _{OH} = -20 mA	2.3 to 2.7	7		20	Ω
R _{OL}	Output LOW On Resistance	I _{OL} = 20 mA	2.3 to 2.7	7		20	Ω
$R_{O\Delta}$	R _{OH} - R _{OL}	$I_0 = 20 \text{ mA}, T_A = 25^{\circ}\text{C}$	2.5			4	Ω


AC Electrical Characteristics (Note 6)

www.DataSheet4U.con


					$T_A = 0^{\circ}C$ to	+70°C, C _L = 30	pF, $R_L = 50\Omega$		
Symbol	Par	ameter		_	$V_{DD} = 2.5V$	\pm 0.2V; V _{DDQ} =	$\textbf{2.5V} \pm \textbf{0.2V}$	Units	
			_	Min	Тур	Max			
f _{MAX}	Maximum Clock Frequency				200			MHz	
t _W	Pulse Duration, CK, CK HIGH or L	_OW (Figure 2)			2.5			ns	
t _{ACT} (Note 7)	Differential Inputs Activation Time, data inputs must be LOW after RESET HIGH (Figure 3)				22			ns	
t _{INACT} (Note 7)	Differential Inputs De-activation Ti data and clock inputs must be hele (not floating) after RESET LOW		5		22			ns	
t _S	Setup Time, Fast Slew Rate (Note 8)(Note 9) (Figure 5)				0.75			ns	
	Setup Time, Slow Slew Rate (Note 9)(Note 10) (Figure 5)				0.9			115	
t _H	Hold Time, Fast Slew Rate (Note	8)(Note 10) (Fig	gure 5)		0.75			ns	
	Hold Time, Slow Slew Rate (Note		0.9			113			
t _{REM}	Reset Removal Time (Figure 7)	et Removal Time (Figure 7)						ns	
t _{PHL} , t _{PLH}	Propagation Delay CK, $\overline{\text{CK}}$ to Q_{n} ((Figure 4)			1.1		2.8	ns	
t _{PHL}	Propagation Delay RESET to Q _n ((Figure 6)					5.0	ns	
Note 7: This Note 8: For Note 9: For Note 10: Fo	er to Figure 1 through Figure 7. s parameter is not production tested. data signal input slew rate $\ge 1 V/ns$. data signal input slew rate $\ge 0.5 V/ns$ a or CK, \overline{CK} signals input slew rates are \ge Citance (Note 11)								
- Symbol	Parameter	Min	Тур	Max	Units	Conditions			
C _{IN}	Data Pin Input Capacitance	2.2		3.2	pF	V _{DD} = 2.5V, \	/ _I = V _{REF} ± 310 r	nV	
-	CK, CK - Input Capacitance	2.2		3.2	pF		/ _{ICR} = 1.25, V _{I(PF}		
				L	·	$V_{DD} = 2.5V, V_1 = V_{DD} \text{ or GND}$			

Note 11: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested.

www.DataSheet4LL.com

