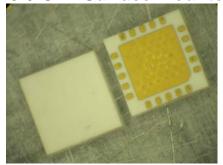


EMP108-Q5


7.0 - 9.5 GHz Surface-Mounted PA

FEATURES

- 7.0 9.5 GHz Operating Frequency Range
- 24.0dBm Output Power at 1dB Compression
- 17.0 dB Typical Small Signal Gain
- -40dBc OIMD3 @Each Tone Pout 14dBm

APPLICATIONS

- Point-to-point and point-to-multipoint radio
- Military Radar Systems

Caution! ESD sensitive device.

ELECTRICAL CHARACTERISTICS (T_a = 25 °C, 50 ohm, VDD=7V, IDQ=200mA)

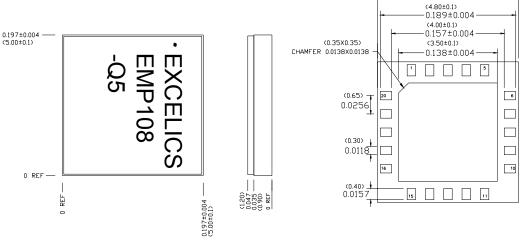
SYMBOL	PARAMETER/TEST CONDITIONS	MIN	TYP	MAX	UNITS
F	Operating Frequency Range	7.0		9.5	GHz
P1dB	Output Power at 1dB Gain Compression	22.5	24.0		dBm
Gss	Small Signal Gain	14.0	17.0		dB
OIMD3	Output 3^{rd} Order Intermodulation Distortion @ Δf =10MHz, Each Tone Pout 14dBm V_{DS} = 7V, I_{DS} = 60% to 70% Idss		-40	-37	dBc
Input RL	Input Return Loss		-10		dB
Output RL	Output Return Loss		-5		dB
ldss	Saturate Drain Current V _{DS} =3V, V _{GS} =0V	240	310	370	mA
V_{DD}	Power Supply Voltage		7	8	V
Rth	Thermal Resistance ¹		30		°C/W
Tb	Operating Base Plate Temperature	-35		+85	°C

MAXIMUM RATING ($T_b = 25$ °C)

Symbol	Characteristic	ABSOLUTE ¹	OPERATING ²
V _{DS}	Drain-Source Voltage	8.5 V	8 V
V _{GS}	Gate-Source Voltage	-4 V	-3 V
I _{DD}	Drain Current	ldss	70% ldss
I _{GSF}	Forward Gate Current	28 mA	4.5 mA
P _{IN}	Input Power	@ 3dB compression	@ 3dB compression
T _{CH}	Channel Temperature	175 °C	150 °C
T _{STG}	Storage Temperature	-65 °C to +175 °C	-65 °C to +175 °C
P _T	Total Power Dissipation	3.6 W	3.0 W

Note: 1. Exceeding any of the above ratings may result in permanent damage.

2. Exceeding any of the above ratings may reduce MTTF below design goals.


7.0 - 9.5 GHz Surface-Mounted PA

CHIP OUTLINE AND PIN ASSIGNMENT

Top View

Bottom View

(5.00±0.1) -0.197±0.004

Additional Notes:

- 1) Ground Plane must be soldered to PCB RF ground
- 2) All dimensions are in inches (mm)
- 3) Refer to Excelics application notes on QFNs for further guidelines
- 4) Pin Assignment:

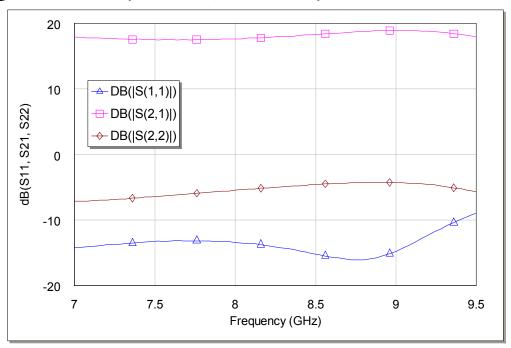
Bottom View Top View Pin 1 INDICATION Vd2 6 20 RFout **RFout** RFin RFin GRAND PLANE 16 10 ۷g

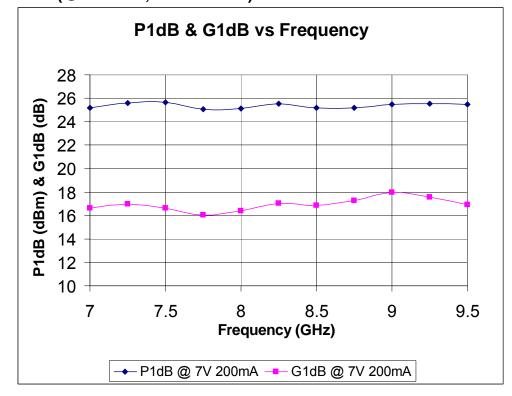
Pin	Assignment
2, 3, 4, 6, 7	NC
8	RF_in
11	V_{g}
9, 10, 12, 13, 14, 15	NC
18	RF _{out}
1	V_{d2}
16, 17, 19, 20	NC
5	V_{d1}

Specifications are subject to change without notice.

Excelics Semiconductor, Inc. 310 De Guigne Drive, Sunnyvale, CA 94085

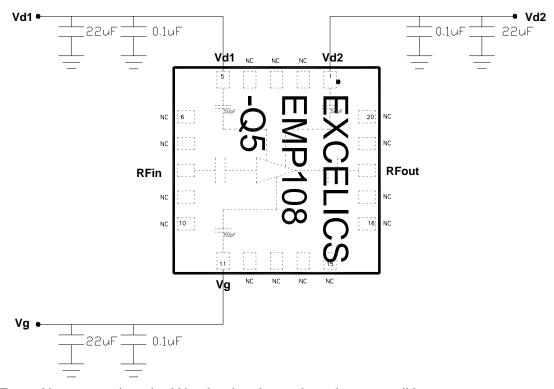
Phone: 408-737-1711 Fax: 408-737-1868 Web: www.excelics.com




7.0 - 9.5 GHz Surface-Mounted PA

Typical Performance:

1. Small-Signal Parameters (@Vds = 7V, lds = 200mA)


2. P1-dB & G1-dB (@Vds = 7V, lds = 200mA)

7.0 - 9.5 GHz Surface-Mounted PA

Recommended Circuit Schematic:

Notes:

- 1) External bypass capacitors should be placed as close to the package as possible.
- 2) Dual biasing sequence required:
 - a. Turn-on Sequence: Apply $V_g = -2.5V$, followed by $V_d = 7V$, lastly increase V_g until required I_{dq}
 - b. Turn-off Sequence: Turn off V_d , followed by V_g
- 3) Demonstration board available upon request.

EMP108-Q5

7.0 - 9.5 GHz Surface-Mounted PA

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC.

AS HERE IN:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.