### GENERAL PURPOSE QUAD OPERATIONAL AMPLIFIER

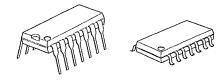
### **■** GENERAL DESCRIPTION

The NJM4741 consists of four independent high-gain operational amplifiers that are designed for high slew rate, wide band, good noise characteristics.

#### **■ FEATURES**

Operating Voltage (±4V∼±20V)

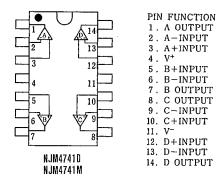
WideBand (3.5MHz typ.)


Slew Rate (1.6V/ µs typ.)

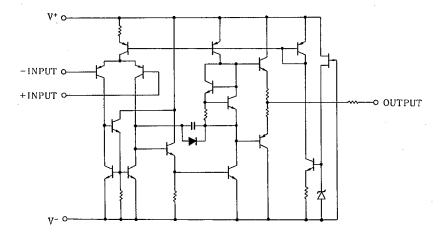
Low Input Noise Voltage (9nV/ Hzs typ.)

Low Distortion (0.0005% typ.)
Package Outline DIP14, DMP14.

Bipolar Technology


#### **■ PACKAGE OUTLINE**




NJM4741D

NJM4741M

### **■ CONNECTION DIAGRAM**



### **■ EQUIVALENT CIRCUIT** (1/4 Shown)



### ■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

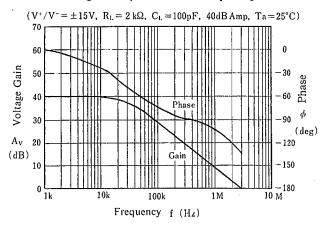
| PARAMETER                   | SYMBOL          | RATINGS     | UNIT       |
|-----------------------------|-----------------|-------------|------------|
| Supply Voltage              | V*/V-           | ±20         | V          |
| Differential Input Voltage  | V <sub>ID</sub> | ±30         | V          |
| Input Voltage               | Vic             | ±15 (note)  | . <b>V</b> |
| •                           |                 | (DIP14) 500 | mW         |
| Power Dissipation           | PD              | (DMP14) 300 | mW         |
|                             |                 | (SSOP14)300 | mW         |
| Operating Temperature Range | Topr            | -40~+85     | °C         |
| Storage Temperature Range   | Tstg            | -40~+125    | °C         |

(note) When the supply voltage is less than  $\pm 15V$ , the absolute maximum input voltage is equal to the supply voltage.

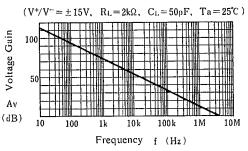
### **ELECTRICAL CHARACTERISTICS**

 $(Ta=25^{\circ}C, V^{+}/V^{-}=\pm 15V)$ 

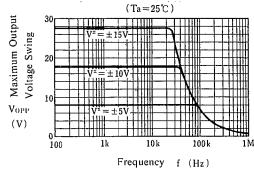
| PARAMETER                       | SYMBOL           | TEST CONDITION                       | MIN. | TYP.     | MAX.     | UNIT  |
|---------------------------------|------------------|--------------------------------------|------|----------|----------|-------|
| Input Offset Voltage            | V <sub>IO</sub>  | $R_S \leq 100 k\Omega$               |      | 1.0      | 5.0      | mV    |
| Input Offset Current            | I <sub>10</sub>  |                                      | _    | 30       | 50       | nA    |
| Input Bias Current              | IB               |                                      | _    | 100      | 300      | nΑ    |
| Large Signal Voltage Gain       | Av               | $R_L \ge 2k\Omega$ , $V_O = \pm 10V$ | 88   | 94       | —        | dB    |
| Operating Current               | I <sub>CC</sub>  |                                      | _    | <u> </u> | 7        | mA    |
| Common Mode Rejection Ratio     | CMR              |                                      | 80   | 120      | —        | dB    |
| Supply Voltage Rejection Ratio  | SVR              |                                      | 80   | 120      | —        | dB    |
| Maximum Output Voltage !        | Vomi             | $R_L \ge 10k\Omega$                  | ±12  | ±13.7    |          | V     |
| Maximum Output Voltage 2        | V <sub>OM2</sub> | $R_L \ge 2k\Omega$                   | ±10  | ±12.5    |          | v     |
| Input Common Mode Voltage Range | V <sub>ICM</sub> |                                      | ±12  | ±14      |          | ν     |
| Slew Rate                       | SR               | $A_V = I$                            | _    | 1.6      | l —      | V/μs  |
| Equivalent Input Noise Voltage  | en               | f=1kHz                               |      | 9        | _        | nV√Hz |
| Channel Separation              | CS               | f=10kHz, Input Referred              | _    | 108      | <u> </u> | dB    |


(note):

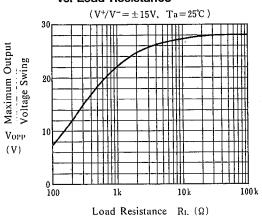
The application which leads to the extreme difference of power dissipation between channels may cause the mutual interference by the temperature gradient on the chip.


### 4

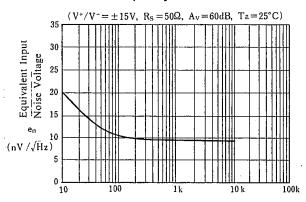
### **■ TYPICAL CHARACTERISTICS**


### Voltage Gain, Phase vs. Frequency



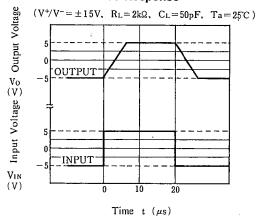

### Voltage Gain vs. Frequency




# Maximum Output Voltage Swing vs. Frequency



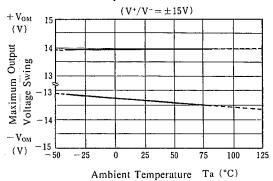
# Maximum Output Voltage Swing vs. Load Resistance



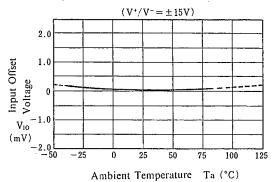

# Equivalent Input Noise Voltage vs. Frequency



Frequency f (Hz)

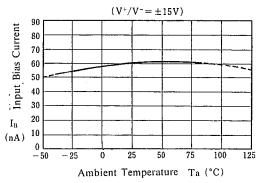

#### Pulse Response



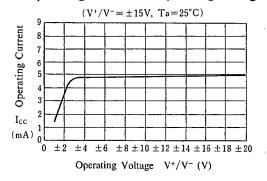

-New Japan Radio Co.,Ltd.-

### TYPICAL CHARACTERISTICS

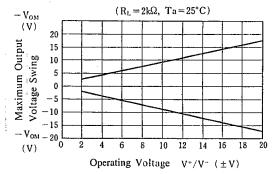
# Maximum Outout Voltage Swing vs. Temperature



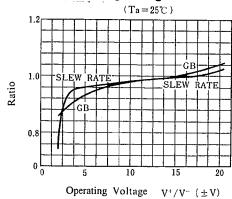

### Input Offset Voltage vs. Temperature




4

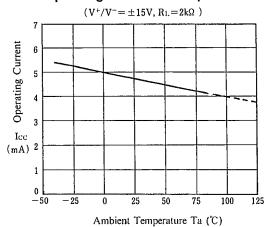

### Input Bias Current vs. Temperature




### Operating Current vs. Operating Voltage



Maximum Output Voltage Swing vs. Operating Voltage




Slew Rate, Unity Gain Bandwidth vs. Operating Voltage



### **■ TYPICAL CHARACTERISTICS**

### **Operating Current vs. Temperature**



| N |   | П | И  | 1 | 7 | Λ | 1   |
|---|---|---|----|---|---|---|-----|
| ľ | u | Л | V١ | 4 | 1 | 4 | • 1 |

### **MEMO**

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.