QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The NJM2902 consists of four independent high-gain operational amplifiers that are designed for single-supply operation.

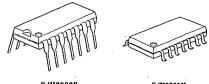
Operation from split power supplies is also possible and the low power supply drain is independent of the magnitude of the power supply voltage.

Used with a dual supply the circuit will operate over a wide range of supply voltages. However, a large amount of crossover distortion may occur with loads to ground. An external current-sinking resistor to -V_s will reduce crossover distortion. There is no crossover distortion problem in single-supply operation if the load is direct-coupled to ground.

 $(+3V \sim +30V)$

 $(0.5V/\mu s typ.)$

DIP14, DMP14, SSOP14

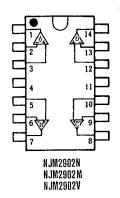

 (V^*-2V)

(1mA typ.)

FEATURES

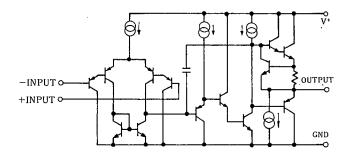
- Single Supply
- Operating Voltage
- High Output Voltage
- Slew Rate
- Low Operating Current
- Package Outline
- Bipolar Technology

■ PACKAGE OUTLINE


NJM2902N

NJM2902M

NJM2902V


PIN CONFIGURATION

PIN FUNCTION

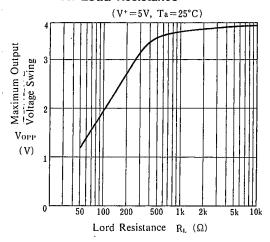
1.A OUTPUT 8.C OUTPUT 9.C-INPUT 2.A-INPUT 3 . A + INPUT 4 . V⁺ 10.C+INPUT 11.GND 5.B+INPUT 12.D+INPUT 13.D-INPUT 6.B-INPUT 7.B OUTPUT 14.D OUTPUT

■ EQUIVALENT CIRCUIT (1/4 Shown)

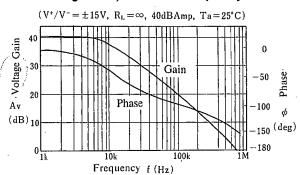
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

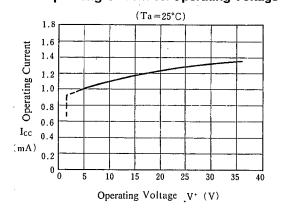
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+(V+/V-)	32(or ±16)	V
Differential Input Voltage	V _{ID}	32	V
Input Voltage	V _{1C}	-0.3~+32 (note)	V
		(DIP14) 570	mW
Power Dissipation	PD	(DMP14) 300	mW
		(SSOP14) 300	mW
Operating Temperature Range	Topr	-40~+85	C
Storage Temperature Range	Tstg	−50~+125	°C

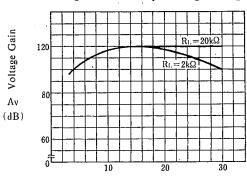

■ ELECTRICAL CHARACTERISTICS

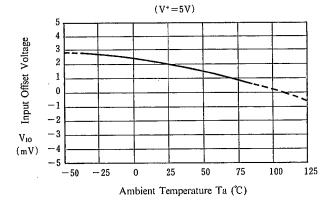
(Ta=25°C V⁺=5V)


PARAMETER	SYMBOL	SYMBOL TEST CONDITION		TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_s=0\Omega$		2	10	mV
Input Offset Current	I _{IO}	$I_{IN}^+ - I_{IN}^-$	-	5	50	nA
Input Bias Current	IB	I_{1N}^+ or I_{1N}^-	_	20	500	nΑ
Large Signal Voltage Gain	A_{V}	R _L ≧2kΩ	-	100	l —	V/mV
Maximum Output Voltage Swing	V _{OM}	$R_L=2k\Omega$	3.5		_	V
Input Common Mode Voltage Range	V _{ICM}	•	0~3.5			v
Common Mode Rejection Ratio	CMR		_	85	_	dB
Supply Voltage Rejection Ratio	SVR		_	100	<u> </u>	dB
Output Source Current	I _{SOURCE}	$V_{IN}^{+} = 1V, V_{IN}^{-} = 0V$	20	40	ļ <u>—</u>	mA
Output Sink Current	I _{SINK}	$V_{IN}^{+} = 0V, V_{IN}^{-} = IV$	8	20	_	mA
Channel Separation	CS .	f=1k~20kHz, Input Referred	-	120	_	dB
Operating Current	1 _{cc}	$R_{t} = \infty$	-	1	. 2	mA
Slew Rate	SR	$V^{+}/V^{-} = \pm 15V$	-	0.5	 	V/μs
Gain Bandwidth Product	GB	$V^{+}/V^{-}=\pm 15V$	_	0.5	il —	MHz

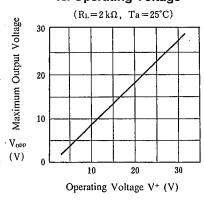
■ TYPICAL CHARACTERISTICS


Maximum Output Voltage Swing vs. Load Resistance


Voltage Gain, Phase vs. Frequency


Operating Current vs. Operating Voltage

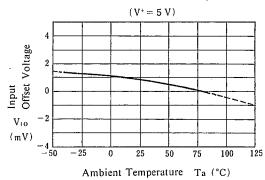
Voltage Gain vs. Operating Voltage



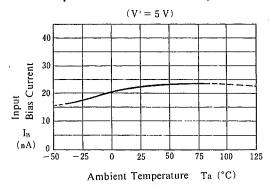
Input Offset Voltage vs. Temperature

Maximum Output Voltage vs. Operating Voltage

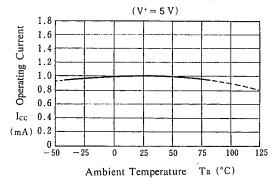
Operating Voltage V+ (V)

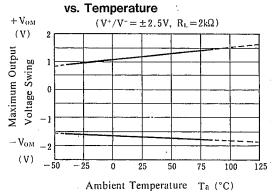

4-172

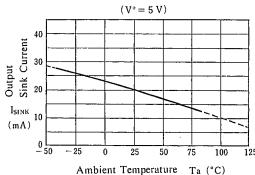
-New Japan Radio Co.,Ltd.

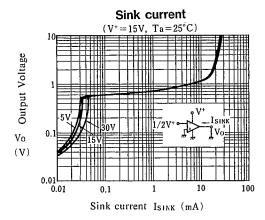

4

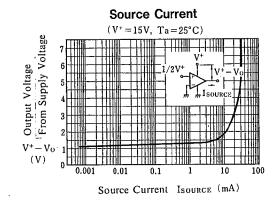
■ TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperature

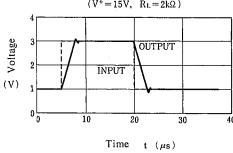

Input Bias Current vs. Temperature

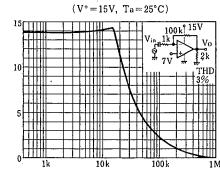

Operating Current vs. Temperature


Maximum Output Voltage Swing



Output Sink Current vs. Temperature

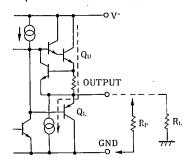

■ TYPICAL CHARACTERISTICS



4

Pulse Response ($V^+=15V$, $R_L=2k\Omega$)

Maximum Output Voltage Swing vs. Frequenccy

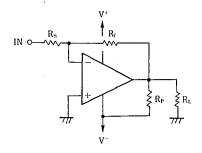

Frequency f (Hz)

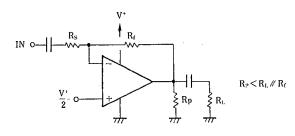
Maximum Output Voltage Swing

> Vом (V)

■ APPLICATION

Improvement of Cross-over Distortion Equivalent circuit at the output stage




NJM2902, in its static state (No in and output condition) when design, Q_U being biassed by constant current (breake down beam) yet, Q_L stays OFF.

While using with both power soure mode, the cross-over distortion might occure instantly when QL ON.

There might be cases when application for amplifier of audio signals, not only distortion but also the apparent frequency bandwidth being narrowed remarkably.

It is aduisable especially when using both power soure mode, constantly to use with higher current on Q_U than the load current (including feedback current), and then connect the pull-down resister RP at the part between output and GND pins.

			-	•	•	•
N		N/	12	()	"	-,
17		W	_	~		
•	 •			•	•	_

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.