## 3-INPUT/2-INPUT VIDEO SWITCH

#### **■ GENERAL DESCRIPTION**

The NJM2508 is video switch for video and audio signal. It contains 3 input-1 output and 2 input-1 output video switch. One input terminal has clamp function and so is applied to fixed DC level of video signal. Its operating voltage is 4.75 to 13V and bandwidth is 10MHz. Crosstalk is 75dB (at f=4.43MHz).

## **■ FEATURES**

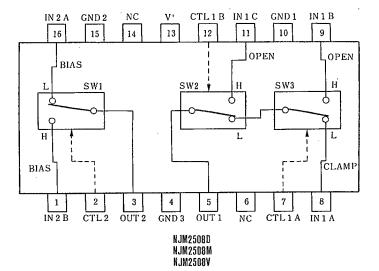
- Operating Voltage (+4.75V~+13V)
- 3 Input-1 Output and 2 Input-1 Output
- Crosstalk 75dB(at 4.43MHz)
- Wide Frequency Range 10MHz(2V<sub>P-P</sub> Input)
- Package Outline

DIP16, DMP16, SSOP16

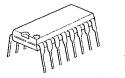
Bipolar Technology

#### ■ RECOMMENDED OPERATING CONDITION

Operating Voltage


٧+

4.75~13.0V


#### **■ APPLICATION**

• VTR, Video Camera, AV-TV, Video Disk Player.

#### **■ BLOCK DIAGRAM**



#### **■ PACKAGE OUTLINE**





NJM2508D

NJM2508M



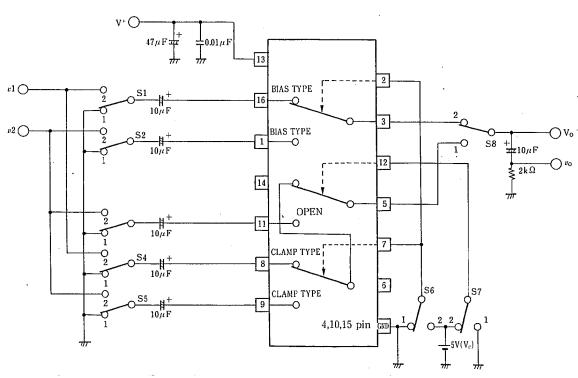
NJM2508V

#### **■ ABSOLUTE MAXIMUM RATINGS**

(Ta=25°C)

| PARAMETER                   | SYMBOL              | RATINGS      | UNIT |
|-----------------------------|---------------------|--------------|------|
| Supply Voltage              | V <sup>*</sup>      | 14           | V    |
| Power Dissipation           | Po                  | (DIP16) 700  | mW   |
|                             |                     | (DMP16) 350  | mW   |
|                             |                     | (SSOP16) 300 | mW   |
| Operating Temperature Range | nge Topr −40~+85 °C |              |      |
| Storage Temperature Range   | Tstg                | -40~+125 °   |      |

# ■ ELECTRICAL CHARACTERISTICS


 $(V^{+}=5V, Ta=25$ <sup>°</sup>C)

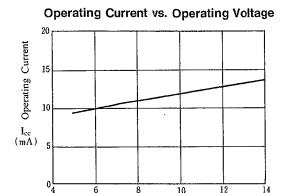
| PARAMETER             | SYMBOL           | TEST CONDITION                                     | MIN.     | TYP. | MAX. | UNIT |
|-----------------------|------------------|----------------------------------------------------|----------|------|------|------|
| Operating Current 1   | I <sub>CC1</sub> | V+=5V (Notel)                                      | 6.6      | 9.4  | 12.3 | mA   |
| Operating Current 2   | I <sub>CC2</sub> | V+=9V (Notel)                                      | 8.0      | 11.5 | 15.0 | mA   |
| Voltage Gain          | Gv               | $V_1 = 2V_{P-P}/100kHz, V_O/V_1$                   | -0.6     | -0.1 | +0.4 | dB   |
| Frequency Response    | $G_{\Gamma}$     | $V_1 = 2V_{P-P}, V_O(10MHz/100MHz)$                | -1.0     | 0    | +1.0 | dB   |
| Differential Gain     | DG               | V <sub>I</sub> =2V <sub>P-P</sub> Staircase Signal |          | 0.3  | -    | %    |
| Differential Phasa    | DP               | V <sub>I</sub> =2V <sub>P-P</sub> Staircase Signal | —        | 0.3  | -    | deg  |
| Output Offset Voltage | Vos              | (Note2)                                            | -10      | 0    | +10  | mV   |
| Crosstalk             | CT               | $V_1 = 2V_{P-P}$ , 4.43MHz, $V_O/V_I$              | <u> </u> | -75  | 1 —  | dB   |
| Switch Change Voltage | V <sub>CH</sub>  | All inside SW: ON                                  | 2.5      | —    | —    | ν    |
| Switch Change Voltage | V <sub>CL</sub>  | All inside SW: OFF                                 | -        | _    | 1.0  | v    |

(Notel) S1=S2=S3=S4=S5=S6=S7=1

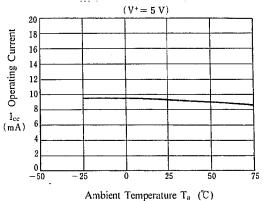
(Note2) Output DC Voltage Difference is tested on S6=1→2, S1=S2=S3=S4=S5=1, S8=2 and S7=1

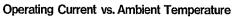
#### **■ TEST CIRCUIT**



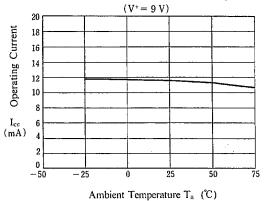

This IC requires  $1M\Omega$  resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

## **■ PIN FUNCTION**

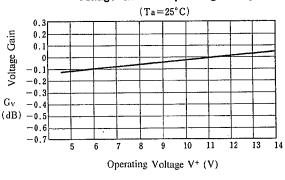

| PIN NO.       | PIN NAME                      | DC VOLTAGE | INSIDE EQUIVALENT CIRCUIT |  |
|---------------|-------------------------------|------------|---------------------------|--|
| 16 1          | IN 2 A<br>IN 2 B<br>(Input)   | 2.5V       | 500 15k 2.5V              |  |
| 8             | IN 1 A (Input)                | 1.5V       | 500<br>777<br>2.2V        |  |
| · 9           | IN 1B IN 1C (Input)           |            | 500<br>500                |  |
| 7<br>12<br>2  | CTL 1A CTL 1B CTL 2 (Control) |            | 8k CTL \$20k              |  |
| 5             | OUT 1<br>(Output)             | 1.8V       |                           |  |
| 3             | OUT 2<br>(Output)             | 0.8V       | OUT                       |  |
| 13            | V*                            | 5 V        |                           |  |
| 15<br>4<br>10 | GND 1<br>GND 2<br>GND 3       |            |                           |  |


# 5

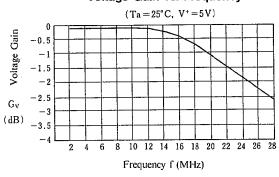
## **■ TYPICAL CHARACTERISTICS** (Ta=+25°C)



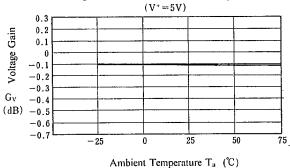

# Operating Current vs. Ambient Temperature

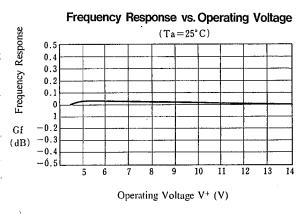


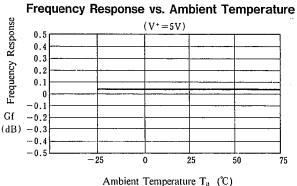




Operating Voltage V+ (V)

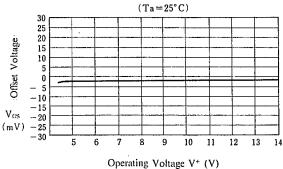



# Voltage Gain vs. Operating Voltage

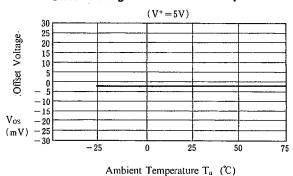




#### Voltage Gain vs. Frequency

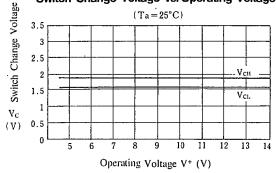



#### Voltage Gain vs. Ambient Temperature

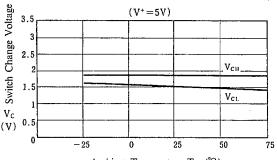






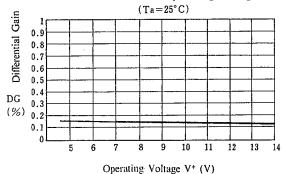


Offset Voltage vs. Operating Voltage



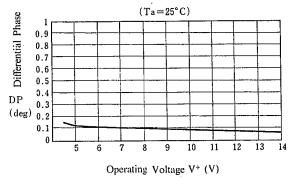

Offset Voltage vs. Ambient Temperature



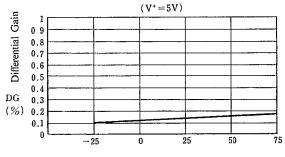
Switch Change Voltage vs. Operating Voltage



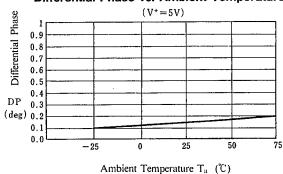

Switch Change Voltage vs. Ambient Temperature




Ambient Temperature  $T_a$  (°C)

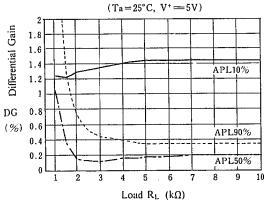




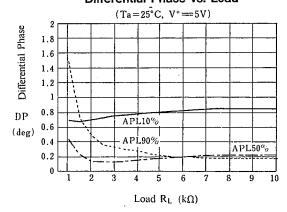


# Differential Phase vs. Operating Voltage



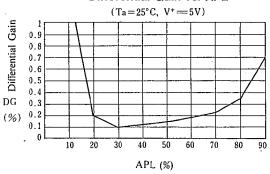
# Differential Gain vs. Ambient Temperature



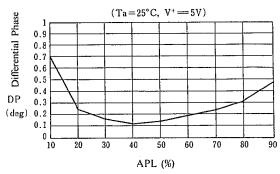

# Differential Phase vs. Ambient Temperature



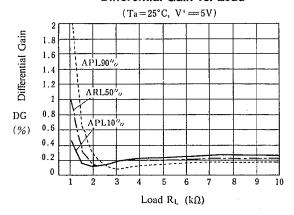

#### Differential Gain vs. Load


Ambient Temperature Ta (°C)

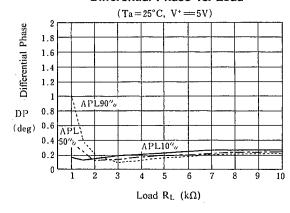



#### Differential Phase vs. Load

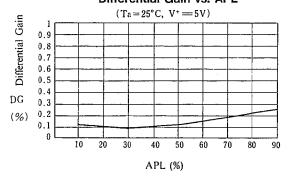



#### Differential Gain vs. APL

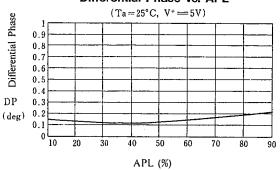


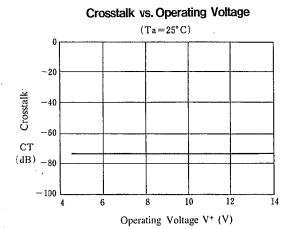

#### Differential Phase vs. APL

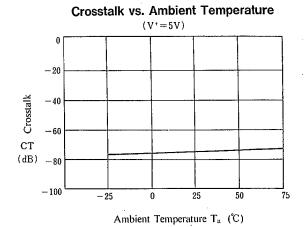


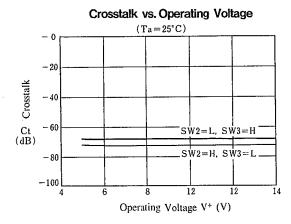

#### Differential Gain vs. Load

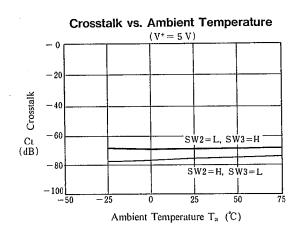


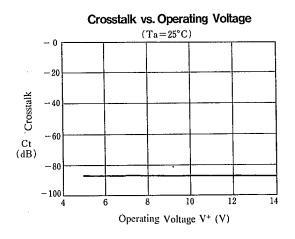

# Differential Phase vs. Load

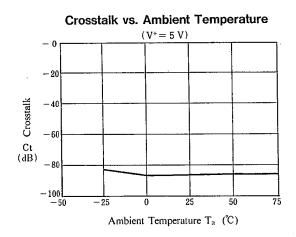




# Differential Gain vs. APL

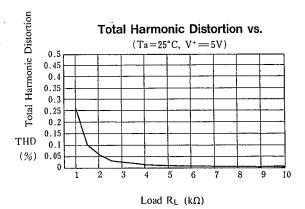




# Differential Phase vs. APL












■ TYPICAL CHARACTERISTICS  $(Ta=\pm 25 ^{\circ}C)$ 



5

| NJI | И25 | 08 |
|-----|-----|----|
|-----|-----|----|

# **MEMO**

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.