FM IF IC FOR REMOTE KEYLESS ENTRY SYSTEM

■ GENERAL DESCRIPTION

The NJM2295A is FM IF IC for the remote keyless entry system (RKE). It includes almost all functions of IF blocks, from the 1st. Mixer to the wave shaving circuit.

Exclusively designed NJM2295A is suited not only for the RKE, but for other FM signal receivers.

■ PACKAGE OUTLINE

NJM2295AV

■ FEATURES

Low Operating Current

5mA typ. at V⁺=5V

● Low Operating Voltage

+2.7V~7.0V

●Local Oscillation Frequency 50~350MHz

Mixer Active Frequency

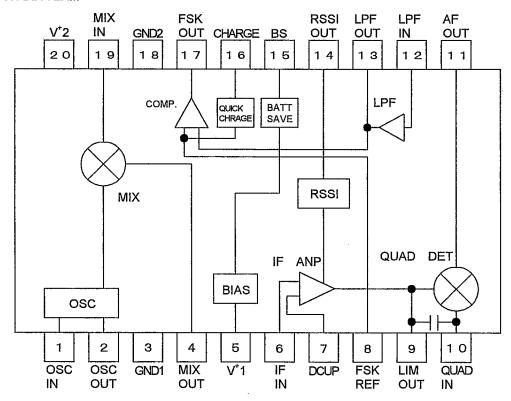
~450MHz

● IF Frequency

IF=10.7MHz

● 1st. Mixer Included

RSSI Circuit Included


● FSK Wave Shaping Circuit

Bipolar Technology

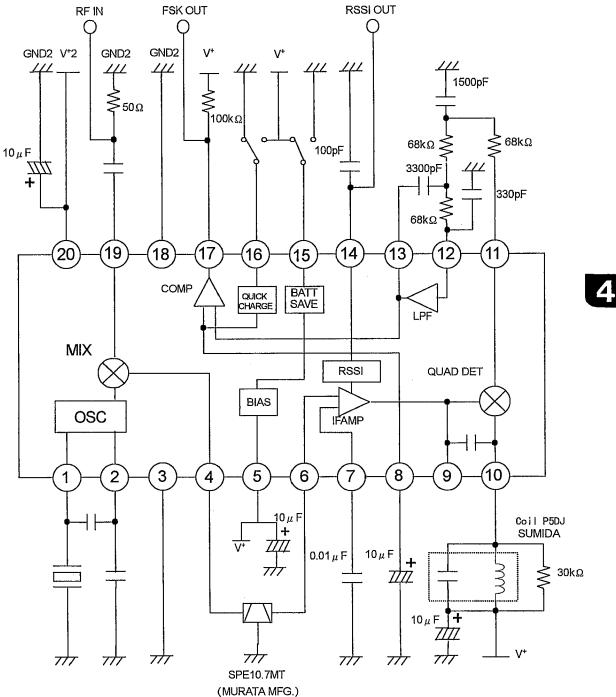
Package Outline

SSOP20

■ BLOCK DIAGLAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)


PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	9.0	V
Power Dissipation	P _D	300	mW
Operating Temperature Range	Topr	-40 ~ +85	လူ
Storage Temperature Range	Tstg	-40~+125	ပ္

■ ELECTRICAL CHARACTERST(V⁺=5.0V,Ta=25°C,fmod=1kHz,fmix=320MHz,fIF=10.7MHz,fdev=±10kHz)

PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V ⁺		2.7	_	7.0	V
No signal Operating Current	lccq		_	5.0	7.5	mA
Battery saving Operating Current	Iccs		1	_	10	μΑ
Mixer Gain 1	Gmix1	RL= No Connect.	13.5	18.5	22.5	dB
Mixer Gain 2	Gmix2	320MHz Gain—450MHz Gain	_	1	3	dB
Mixer Sept Point	[P		-	103	_	dB μ VEMF
Mixer Input Resistance	RinM	f=320MHz	ı	1	_	kΩ
Mixer Input Capacity	CinM	f=320MHz	-	2	****	pF
Mixer Output Resistance	RoM		_	330	_	Ω
If amplifier Input Resistance	RinIF			330		Ω
Signal to Noise Ratio 1	S/N1	Mixer Input,Vin=80dB μ VEMF	_	60		dB
Signal to Noise Ratio 2	S/N2	IF input, Vin=80dB μ VEMF	_	60	_	dB
Signal to Noise Ratio 3	S/N3	IF input, Vin=35dB μ VEMF		25		dB
-3dB limiting sensitivity	Slim	Mixer Input		22	27	dB μ VEMF
Demodulated Output Level	Vod	IF input, Vin=60dB μ VEMF	80	150		mVrms
AM Rejection Ratio	AMR	IF input, Vin=80dB μ VEMF, AM=30%		50		dB
Duty ratio of Wave Shaped Output	DR	IF input, Vin=60dB μ VEMF	40	50	60	%
RSSI Output Voltage 1	RSSI1	IF input Vin=20dB μ VEMF	0.35	0.55	0.70	ν
RSSI Output Voltage 2	RSSI2	IF input, Vin=60dB μ VEMF	0.7	1.00	1.3	V
RSSI Output Voltage 3	RSSI3	IF input, Vin=100dB μ VEMF	1.30	1.75	2.15	ν.
RSSI Output Resistance	RSSIR		_	48		kΩ
Quick charge/discharge current	lch		35	70	120	μΑ
Low Level Output Voltage f FSK-OUT	VfskL	IL=100 μ A	_	0.1	0.4	V
High Level Leak Current of FSK-OUT Terminal	IfskH	·	_	-	2	μΑ

MAPPLICATION CIRCUIT

■ TERMINAL FUNCTION

PIN No.	SYMBOL	FUNCTION	EQUIVARENT CIRCUIT
1	OSC IN	SAW is oscillation input terminal.	V ⁺
2	OSC OUT	Oscillation Output Terminal.	2 1K 2
19	MIX IN	Mixer input terminal. Input impedance : Parallel resistance : 1KΩ Parallel capacity : 2pF	1. 9K \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4	MIX OUT	Output terminal for mixer. Output resistance is 330 Ω at typical.	V ⁺ 300 4
6	IF IN	Limiter input terminal. Input resistance is 330 Ω at typical.	20K \$ 165
7	DEC	Decupling terminal for bias.	7 200 8

■ TERMINAL FUNCTION

PIN No.	SYMBOL	FUNCTION	EQUIVARENT CIRCUIT
9	LIM OUT	Output terminal for limiter amplifier. Typical input impedance is 300 ohms.	V ⁺ 3 2p 7 7 7 7 7 7 7 7 7
10	QUAD IN	Input terminal of a quadrature detection circuit. Connect with a ceramic discriminator.	300 160u 100 200 200 200 200 200 200 200 200 200
14	RSSI OUT	RSSI output terminal	V ⁺ 300 48K
11	AF OUT	Demodulated signal output	V ⁺ 300 60u 60u 7//
12	LPF IN	Input terminal of a low pass filter. This terminal is biased from the AF-OUT terminal (11pin) through an external RC filter.	12 300 300 12 300

■ TERMINAL FUNCTION

PIN No.	SYMBOL	FUNCTION	EQUIVARENT CIRCUIT	
13	LPF OUT	Output terminal of a low pass filter.	300 K WW	
8	FSK REF	Reference input terminal of a wave shaping comparator. Connected with an external capacitor.	8 300 W 300K 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
17	FSK OUT	Output terminal of a wave shaping circuit. The Wave shaped signal inverted for the LPF output comes out.	300 W 177	
15	BS	Control terminal of a battery saving circuit. H: This circuit is ON L: This circuit is OFF	60K 7///	
16	CHARGE	Control terminal of a quick charge / discharge circuit. H: This circuit is ON. L: This circuit is OFF.	300K 7///	
5	V ⁺ 1	On and after IF supply voltage.	-	
3	GND1	On and after IF ground.	-	
20	V ⁺ 2	Supply voltage for mixer and OSC.	•	
18	GND2	Ground for mixer and OSC.	-	

NJM2295A

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.