2-INPUT 3CHANNEL VIDEO SWITCH

GENERAL DESCRIPTION

NJM2286 is a switching IC for switching over from one audio or video input signal to another. Internalizing 2 inputs, 1 output, and then each set of 3 can be operated independently. They are a Clamp type" and it can be operated while DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating supply voltage 4.75 to 13.0V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

FEATURES

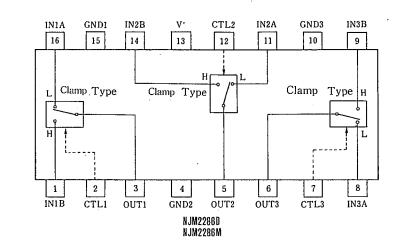
- 2 Input-1 Output Internalizing 3 Circuits (Clamp type).
- Wide Operating Voltage $(4.75 \sim 13.0V)$
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency Feature 10MHz(2VP-P Input)
- Package Outline DIP16, DMP16, SSOP16
- Bipolar Technology

APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disk Player.

BLOCK DIAGRAM

PACKAGE OUTLINE


NJM2286D

NJM2286M

·5-289

NJM2286V

New Japan Radio Co., Ltd.-

JRC

MAXIMUM RATINGS

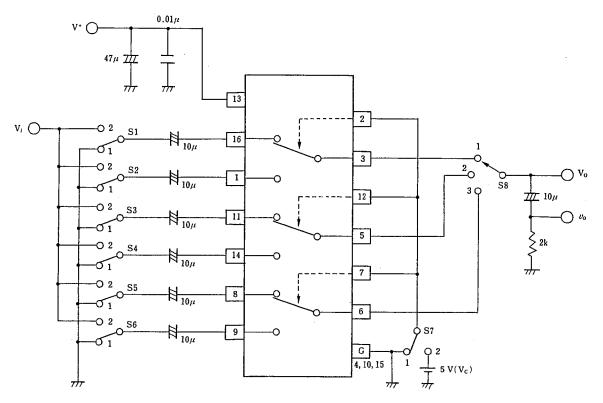
■ MAXIMUM RATINGS					
PARAMETER	SYMBOL	RATINGS			
Supply Voltage	· V*	14	V		
Power Dissipation	PD	(DIP16) 700	mW		
		(DMP16) 350	mW		
Operating Temperature Range	' Topr	-40~+85	°C		
Storage Temperature Range	· Tstg	-40~+125	°C		

ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

ŀ

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	lcci	V+=5V (Notel)	7.9	11.3	14.7	mA
Operating Current (2)	I _{CC2}	V ⁺ =9V (Note1)	9.8	14.1	18.4	mA
Voltage Gain	Gv	$V_{I} = 100 \text{kHz}, 2 V_{P-P}, V_{O} / V_{I}$	-0.6	1.0-	+0.4	dB
Frequency Gain	GF	$V_1 = 2V_{P-P}, V_0(10MHz)/V_0(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	$V_1 = 2V_{P-P}$, Standard Staircase Signal	—	0.3		%
Differential Phasa	DP	$V_1 = 2V_{P-P}$, Standard Staircase Signal	_	0.3	—	deg
Output Offset Voltage	Vos	(Note2)	- 15	0	+15	mV
Crosstalk	СТ	$V_1 = 2V_{P-P}, 4.43 MHz, V_0/V_1$	—	-75		dB
Switch Change Over Voltage	V _{CH}	All inside Switch ON	2.5			v
Switch Change Over Voltage	VCL	All inside Switch OFF	-		1.0	v


—New Japan Radio Co.,Ltd.-

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=S5=S6=1, $S7=1\rightarrow 2$ Measure the output DC voltage difference

5-290

TEST CIRCUIT

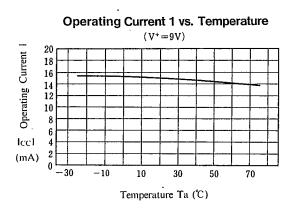
This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

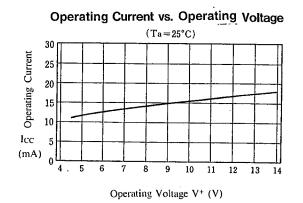
ARAMETER	SI	S 2	S 3	S 4	S 5	S 6	S 7	S 8	TEST PART
Icci	1	1	1 ·	1	1	1	1	1	V+
Icc2	1	1	1	1	1	1	1	1	
Gv1	2	1	1	1	1	1	1	1	v ₀
Gf1	2	1	1	1	1	1	1	1	
DG1	2	1	1	1	1	1	1	1	
DP1	2	1	1	1	1	1	1	1.	
CT 1	2	1	1	1	1	1	2	1	vo
CT 2	1	2	1	1	1	1	1	1	
CT 3	1	1	2	1	1	1	2	2	
CT 4	1	1	1	2	1	1	1	2	
CT 5	1	1	1	1	2	1	2	3	
CT 6	1	1	1	1	1	2	1	3	
Vosi	1	1	1	1	1	1	1/2	1	Vo
Vci	1/2	2/1	1	1	1	1	Vc	1	Vc
THD	2	1	1	1	1	1	1	1	v ₀

New Japan Radio Co., Ltd.

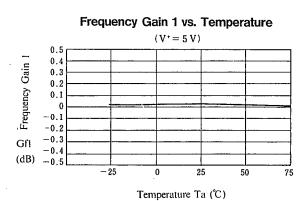
5-291

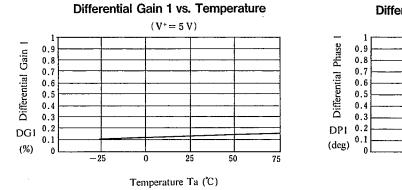
TERMINAL EXPLANATION

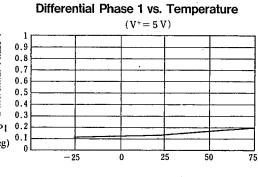

.


PIN No.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT
16 1 11 14 8 9	IN 1 A IN 1 B IN 2 A IN 2 B IN 3 A IN 3 B (Input)	1.5V	
2 12 7	CTL 1 CTL 2 CTL 3 (Switching)		
3 5 6	OUT 1 OUT 2 OUT 3 (Output)	0.8V	o out
13	V+	5 V	· ·
15 4 10	GND 1 GND 2 GND 3		

5

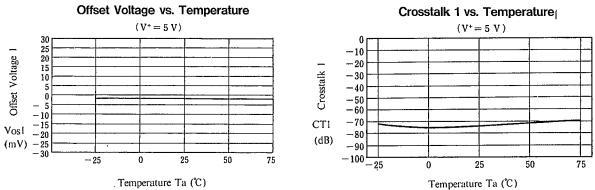

5-292-----New Japan Radio Co., Ltd.-

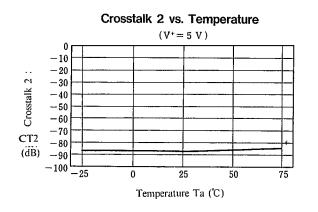

TYPICAL CHARACTERISTICS

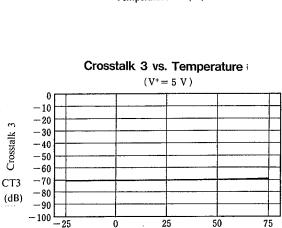


Voltage Gain 1 vs. Temperature $(V^+ = 5V)$ 0.3 0.2 Voltage Gain 1 0.1 0 -0.1 -0.2-0.3 -0.4Gv1 -0.5 -0.6 -0.7 (dB) 25 75 -25 50 0 Temperature Ta (°C)

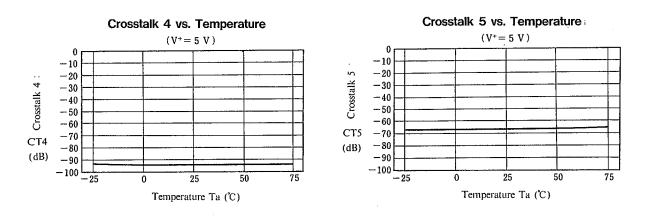
-New Japan Radio Co., Ltd.


Temperature Ta (°C)

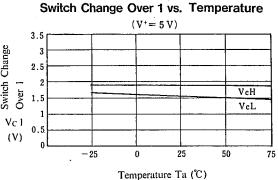


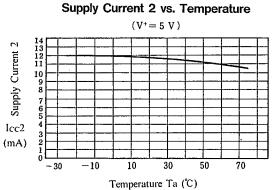

e Ta (°C)


5-293

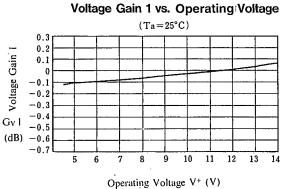

TYPICAL CHARACTERISTICS

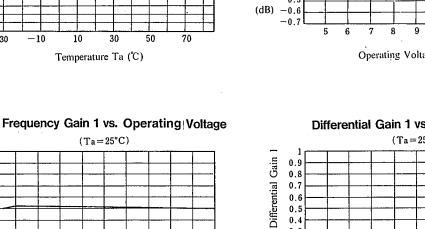


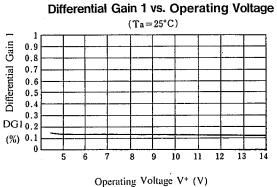




5-294 New Japan Radio Co., Ltd.


TYPICAL CHARACTERISTICS





Operating Voltage V+ (V) `

New Japan Radio Co., Ltd.-

0.5 0.4 0.3

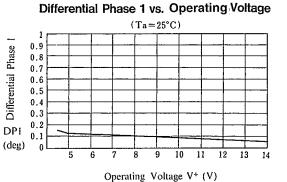
0.2

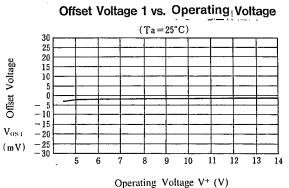
0.1 0

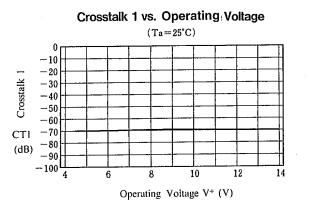
-0.1

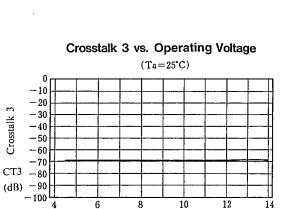
-0.2

-0.3

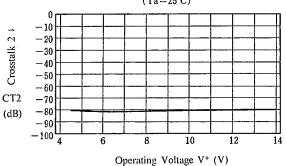

-0.4 -0.5(dB)

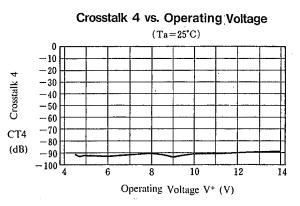

5 6 7 8 9 10 11 12 13 14


Frequency Gain 1


Gfl

TYPICAL CHARACTERISTICS

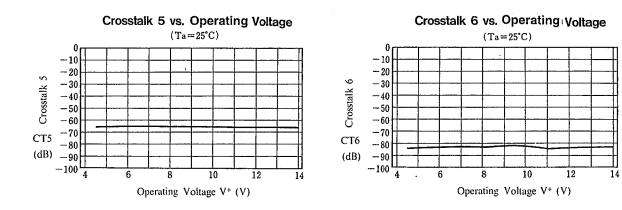


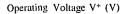


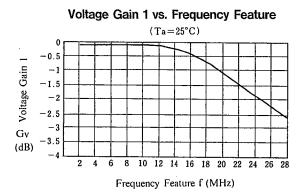
Operating Voltage V⁺ (V)

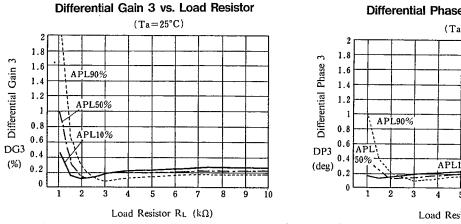
— New Japan Radio Co.,Ltd.

Crosstalk 2 vs. Operating Voltage $(Ta=25^{\circ}C)$

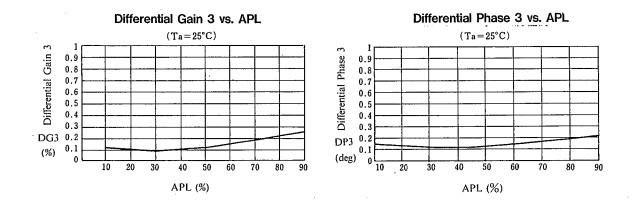



Downloaded from Elcodis.com electronic components distributor


5-296-


TYPICAL CHARACTERISTICS

Switch Change Over 1 vs. Operating Voltage $(Ta=25^{\circ}C)$ 3.5 A Switch Change 3 2.5 VeH 2 1.5 VeL 1 0.5 (V) 0 5 6 7 8 9 10 11 12 13 14


-New Japan Radio Co.,Ltd.-

Differential Phase 3 vs. Load Resistor $(Ta = 25^{\circ}C)$ APL10% 5 6 7 8 9 10

Load Resistor R_L (k Ω)

-5**-**297

TYPICAL CHARACTERISTICS

5

5-298 New Japan Radio Co., Ltd.-

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.